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We begin by calculating the polarizability of the construction. We will do
this in two steps. First we consider the polarizability along the axis of the rod
and then we calculate the polarizability orthogonal to the rod axis. We can
break it up like this since electric fields can be added linearly and therefore
we can ’split’ the field into one component along the axis of the rod and one
orthogonal component.

Let us start by denoting the polarizability of a sphere α. It is known that
α = 4πε0R

3. Next let us consider the two metal balls at a distance L, connected
through a rod with negligible electrical effects, from each other with an electric
field Ex along the axis of the rod. By symmetry the dipole moment of both of
the spheres will be equal. Let us call it ~p. The electrical field far away from a
dipole is be calculated through

~E(~r) =
3(~p · r̂)r̂ − ~p

4πε0r3
.

At a distance L from the dipole along the axis of the dipole moment the field is

~E(r) =
2~p

4πε0r3
.

The dipole moment induced at one ball due to the external electric field ~Ex =
Exx̂ and the field from the other ball can be calculated through

p = α(Ex +
2p

4πε0L3
).

Solving this for p gives

p =
αEx

1 − 2α
4πε0L3

.
Now we can do similar calculations but where the external electric field

~Ey = Ey ŷ is orthogonal to the axis of the rod. In this case calculations are
very similar except for the fact that the electric field around the dipole in the
direction orthogonal to the dipole moment is

~E(r) =
−~p

4πε0r3
.

And therefore the dipole moment instead becomes

p = α(Ey −
p

4πε0L3
),

which, solving for p, yields

p =
αEy

1 + α
4πε0L3

.

Adding these results together we get that

~p =
2αEx

1 − 2α
4πε0L3

x̂+
2αEy

1 + α
4πε0L3

ŷ

1



when we have the electric field

E = Exx̂+ Ey ŷ = E(−sinθx̂+ cosθŷ).

Note that we have multiplied both terms by 2 since there are two dipoles of
equal dipole moment in the system, namely the two balls. The torque acting
on a dipole is ~τ = ~p× ~E Plugging in the value of ~p into this equation gives us

~τ = (
2αExEy

1 − 2α
4πε0L3

− 2αExEy
1 + α

4πε0L3

)ẑ.

Using L >> R (and the fact that α = 4πε0R
3) we can linearize this expression

and get

τ =
6α2

4πε0L3
ExEy.

Now we plug in values for Ex and Ey and get

τ = − 6α2E2

4πε0L3

sin2θ

2
.

Which, since we have very small oscillations, is approximately

τ = − 6α2E2

4πε0L3
θ.

Since R << L we ignore the fact that the spheres are not point masses when cal-
culating the moment of inertia around the centre of mass. Thus I = 2M(L2 )2 =
ML2

2 . Since the moment of inertia is constant we have τ = Iθ̈ and thus

θ̈ = − 6α2E2

4πε0IL3
θ = − 12α2E2

4πε0ML5
θ.

Th= is differential equation is the equation for simple harmonic motion with

ω =

√
12α2

4πε0ML5
E,

or equivalently

ω =

√
48πε0R6

ML5
E

. Now we just need to plug this into T = 2π
ω to get our expression for the period

T =

√
πML5

12ε0R6E2
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