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Due to the very strong magnetic field, the ball gets saturated, i.e it reaches
its maximum magnetization. After we turn off the external field, the ball is
still magnetized. The goal is to find the magnetization, which we define as the
magnetic dipole moment per unit volume. We will do this by making analogies
between magnetic and electric fields. First, we define the electric diplacement:

D = ϵ0E+P, (1)

where P is the polarization. We will also need the magnetic field H as a function
of the magnetic induction B:

B = µ0 (H+M) , (2)

where M is the magnetization. We then write down Maxwell’s equations in
matter:

∇ ·D = ρ,

∇ ·B = 0,

∇×E = −∂B

∂t
,

∇×H = µ0

(
j+

∂D

∂t

)
,

where ρ is the charge density, and j is the current density. As all fields are static
and there are no currents or charges, these equations have the form:

∇ ·D = 0,

∇ ·B = 0,

∇×E = 0,

∇×H = 0.

If we look closely at these equations, we can see that one can make the corre-
spondences E to µ0H and D

ϵ0
to B (we will see later why we should include the

factors µ0 and 1
ϵ0
). Thus, using Eq.(1) and Eq.(2) we have another correspon-

dence, namely between P
ϵ0

and µ0M. This means that we can look at a similar
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problem with electric fields.
Suppose that we have a metallic sphere with radius R in an external homo-
geneous electric field Eext. We can find the electric field due to the polarized
sphere by superposing two balls with uniform charge densities ρ and −ρ with
their centers at a small distance a. Using Gauss’s law, we can find the electric
field due to the positively charged ball. Using a surface with radius r around
the center, one obtains the following relations:

E4πr2 =
ρ 4
3πr

3

ϵ0

=⇒ E =
ρr⃗

3ϵ0
.

After we superpose the fields from the positive and negative balls, we obtain
the inner electric field due to the polarized sphere:

Esph =
ρa⃗

3ϵ0
.

The whole electric field inside the sphere will then be

Ein = Eext −
ρa⃗

3ϵ0
. (3)

By definition, the dipole moment of the sphere is

p = ρ
4

3
πR3a⃗ =

4

3
πR3P.

From this, it follows that Eq.(3) becomes

Ein = Eext −
P

3ϵ0
.

Going back to the magnetic field problem, we use the analogies made earlier:

µ0Hin = µ0Hext −
µ0M

3
.

Here, we see that the additional factors noted earlier were needed due to dimen-
sional analysis. For the rest of the solution we will use H instead of Hin. Now,
we use the fact that Bext = µ0Hext and B = µ0 (H+M) and obtain

B = 3Bext − 2µ0H. (4)

As we turn off the external magnetic field, we use that Bext = 0. Then, on
the hysteresis graph we draw a straight line, which crosses the origin and has a
slope −2 (see Fig.(1)). The intersection points give us the values of H and B

2



Figure 1: Intersection points A and B of the function (4) (the blue line) when
Bext = 0 with the hysteresis curve.

for the two temperatures:

B(20°C) ≈ 0.95T,

µ0H(20°C) ≈ −0.47T,

B(120°C) ≈ 0.48T,

µ0H(120°C) ≈ −0.24T.

We can then find the magnetization of the ball for the different temperatures
using B = µ0 (H+M). By definition, the magnetic dipole moment is pm =
4
3πR

3M. After plugging in the numeric values, we can easily find the decrease
in the magnetic dipole moment due to the heating:

∆pm ≈ 2.35A ·m2
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