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Lemma 1. If a magnetic sphere is placed in an external uniform magnetic field B0 pointing
in the z-direction, the sphere will become uniformly magnetized with uniform B and H
inside the ball. They point in the direction of B0 and satisfy

B+ 2µ0H = 3B0. (1)

Proof. First, note that

H =
B

µ0
−M

∇×H =
1

µ0
∇×B−∇×M

= J+ ϵ0Ė− Jb

= Jf

∇×H = 0. (2)

We’ve used the fact that Ė = 0 (the system is static) and free current density Jf = 0.
Recall also Gauss’s law for magnetism:

∇ ·B = 0. (3)

In addition to (2) and (3), there is a direct relationship between H and B determined
by the material’s properties within the ball and given by H = B/µ0 outside. We also
have boundary conditions that the fields tend to the externally applied field B0 at infinity.
Thus, all of these conditions let us solve for B and H.

A solution is described as follows.

1. In the region r < R, the B-field and H-field are uniform and point in the z-direction.

2. In the region r > R, the B-field is the superposition of the externally applied field
B0 and the field Bm of a magnetic dipole m at r = 0 pointing in the z-direction.

1



H1

H2 H0

Hm

θ

z

m

B0

(a) H-field at the surface of the ball

B1

B2 B0

Bm

θ

z

m

B0

(b) B-field at the surface of the ball

Figure 1: Metal ball magnetized in a magnetic field

It is clear that (3) and (2) are satisfied in the region r < R and in the region r > R.
Also, the boundary conditions are clearly satisfied as the field due to the dipole m tends
to zero at infinity. It now remains to check that the equations are satisfied at the interface
between the sphere and the vacuum.

(2) translates to H∥ is continuous across the interface. In other words, for a point on
the interface at an angle θ from the z-direction (Figure 1a),

µ0H∥1 = µ0H∥2 = B∥2

µ0H sin θ = B0 sin θ +Bm∥ (H := H-field inside the ball)

µ0H sin θ = B0 sin θ −
µ0m sin θ

4πR3

µ0H = B0 −
µ0m

4πR3
. (4)

(3) translates to B⊥ is continuous across the interface. In other words, for a point on
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the interface at an angle θ from the z-direction (Figure 1b),

B⊥1 = B⊥2

B cos θ = B0 cos θ +Bm⊥ (B := B-field inside the ball)

B cos θ = B0 cos θ +
µ0m cos θ

2πR3

B = B0 +
µ0m

2πR3
. (5)

Eliminating m in (4) and (5) gives

B + 2µ0H = 3B0,

as desired.
Note that, to find the solution to the entire B- and H-fields, one determines (H,B)

(the fields inside the ball) using (1) and the relationship between B and H as given by
the properties of the ball’s material (e.g. a hysteresis curve). Then m can be found using
either (4) or (5), from which the fields outside the ball are determined.

Now, consider the ball in question. It is placed in a large external magnetic field that
allows it to achieve saturation, so that it follows the hysteresis curve when the external
field is removed. When the external field is completely removed (B0 = 0), we have

B + 2µ0H = 0

according to Lemma 1. On the graph, this corresponds to the line l with slope −2 through
the origin (Figure 2).

The intersection of the hysteresis curve with l gives the (H,B) of the ball after the
external applied field has been removed. This gives B = 0.95T at 20 °C (see Figure 2).
Then, when the ball is heated to 120 °C, it descends along l until it reaches the hysteresis
curve corresponding to 120 °C, where the magnetic flux density becomes B′ = 0.48T (see
Figure 2). So the decrease in the magnetic flux density inside the ball is

B −B′ = 0.47T.

Since B + 2µ0H = 0 and H = B/µ0 −M , we get B + 2µ0(B/µ0 −M) = 0, or

3B − 2µ0M = 0

M =
3

2µ0
B.

Thus, the decrease in magnetization of the ball is

M −M ′ =
3

2µ0
(B −B′) = 5.6× 105A/m.
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Finally, since magnetic dipole moment m = VM = 4
3πR

3M for the ball, we obtain the
following for the decrease in its magnetic dipole moment:

m−m′ =
4

3
πR3(M −M ′) = 2.4Am2.

Figure 2: Hysteresis curves with the line l corresponding to B0 = 0.
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