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1 Three preliminary observations

1. The boy’s acceleration has constant magnitude µg.

We show that the boy’s acceleration has a constant magnitude of µg in order to
minimize the time T he takes to complete a full lap.

Clearly, the boy’s maximum acceleration is µmboyg/mboy = µg.

Now, if there is a part p of the boy’s trajectory where the boy’s acceleration doesn’t
exeed µg − ε for ε > 0, then he can decrease T by doing the following. He follows
his original trajectory, but he increases his tangential acceleration by a small amount
during the first half of p and decreases his tangential acceleration by a small amount
during the second half. If the change in acceleration is sufficiently small, then his
total acceleration will still be below µg on p. Also, with the right change in tangential
acceleration on p, the change in his speed will be 0 at the start of p, increase to a
maximum δvm somewhere in the middle of p, and decrease back to 0 at the end of
p. (The change in speed must be 0 at the two ends of p to ensure that speed is
continuous at these two points.) So his average speed increased by a nonzero amount
on p, meaning it now takes him a shorter time to traverse p and thus a shorter time
to complete the whole lap.

Some parts in the argument are somewhat hand-wavy. Filling in the details is
left as an exercise for the reader :P

2. There are no constraints on the direction of the boy’s acceleration.

It is well known that an upright person can exert static friction on the ground in
any direction and of any magnitude (up to the maximum allowed by the coefficient
friction) at his will by precisely controlling his body movements. Thus, the boy is
capable of accelerating at µg in any direction.

3. The boy’s trajectory passes through all vertices of the triangle.

We show that, the boy’s trajectory must pass through all vertices of the triangle
when T is minimized.

First, note that the minimum period Tm(a) as a function of a is strictly increasing.
In particular, since Tm is only dependent on the size of the triangle a and the boy’s

acceleration µg, dimensional analysis gives Tm ∝
√

a
µg , which strictly increases with

increasing a.

Now, suppose that the boy’s period-minimizing trajectory doesn’t pass through all
vertices of the triangle. Then a strictly larger triangle of side length a′ > a fits within
the boy’s trajectory of period Tm(a), meaning that Tm(a) ≥ Tm(a′), which contradicts
the fact that Tm(a) is a strictly increasing function.
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The three observations above indicate that the original problem is equivalent to the
following:

A boy (modeled as a point mass) undergoes periodic motion in the plane around an
equilateral triangle of side length a. His trajectory passes through all three vertices
of the triangle. Also, his acceleration has constant magnitude µg but there are no
constraints on its direction. Find the minimum period T of the boy’s motion.

The rest of this article focuses on the equivalent problem stated above.
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Here are some preliminary definitions:

• Let r(t) be the trajectory of the boy, which is periodic with period T . WLOG, we
assume the boy runs clockwise around the triangle.

• Let the equilateral triangle be ABC (vertices labeled in clockwise order) and let its
center be O. Let r(0) = A.

2 Symmetry assumptions

Due to the symmetry of the equilateral triangle, we assume the period-minimizing tra-
jectory is both rotationally symmetric and reflectionally symmetric. To be precise, we’re
assuming 3-fold rotational symmetry, which says that the trajectory on each side of the
triangle is the same: the point r(t) coincides with r(t−T ) rotated clockwise by 2π/3, where
T = T /3. In addition, we assume reflectional symmetry across each axis of symmetry of
the triangle: the point r(t) coincides with r(−t) reflected across OA.

Due to rotational symmetry, the boy’s trajectory is the same on the three sides of the
triangle, so minimizing the total period T is equivalent to minimizing the time T = T /3
it takes to go from one vertex of the triangle to the next.

Due to reflectional symmetry, the portion of the trajectory between A and B (i.e.,
pAB := r([0, T ])) makes the same angle θ with AB at A and B. And due to rotational
symmetry this angle is the same for pBC := r([T, 2T ]) and pCA := r([−T, 0]). Also due to
symmetry, the boy’s speeds right before and right after passing through each vertex of the
triangle (there are 6 such speeds) are all equal, and call that speed v0. There are two cases
that we will discuss separately: θ ̸= π/3 (Section 3) and θ = π/3 (Section 4).
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A rigorous justification that the period-minimizing trajectory satisfies rotational and
reflectional symmetry is given in the Appendix (Section 5).
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3 Case 1: θ ̸= π
3

Here, pCA and pAB meet at an angle 2θ + π
3 ̸= π at A, meaning they form a corner at A.

Since acceleration is always finite, the boy’s speed v0 at A must be zero. We show that in
this case that

T ≥ 2

√
a

µg
.

Consider just pAB. The length is at least a, and the magnitude of the boy’s tangential
acceleration is at most µg everywhere.

Within a fixed time T , the maximum distance the boy can travel while keeping the
magnitude of his tangential acceleration dv

dt (v is speed) at most µg is

dm =
1

4
µgT 2.

We can see this by considering the v-t graph of the boy. The graph starts at (0, 0) and
ends at (T, 0) because the boy’s speed is zero at A and B, and the slope at any point
on the graph is always between ±µg. The distance the boy travles is given by the area
under the graph, which is maximized when the graph goes consists of the line from (0, 0)
to
(
T
2 , µg

T
2

)
(slope µg) and the line from

(
T
2 , µg

T
2

)
to (T, 0) (slope −µg). That gives a

maximum distance

dm =
1

2
T

(
µg

T

2

)
=

1

4
µgT 2.

Now, this distance must be at least a, i.e.,

1

4
µgT 2 ≥ a

T ≥ 2

√
a

µg
.
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4 Case 2: θ = π
3

Now pCA and pAB meet at an angle 2θ+ π
3 = π, so the boy’s speed v0 at A can be nonzero.

In this case, the boy’s velocity is continuous at A as both its magnitude and direction are
continuous at A, so the acceleration at A would simply be the limit approaching A from
either side, i.e., µg.

4.1 Equivalent problem in velocity space

Now, consider the boy’s trajectory pAB in velocity space. We denote the boy’s velocity
v(t) by point P in velocity space. Recall that |v(0)| = |v(T )| = v0. Now, conditions in
position space can be translated to conditions in velocity space as follows.

In polar coordinates, P starts at v(0) = (v0, θ) at time t = 0 and ends at v(T ) = (v0,−θ)
at time t = T , where θ = π

3 .

• “The angle θ that pAB makes with AB at points A and B equals π
3 ” becomes “v(0)

points in the direction of π
3 and v(T ) points in the direction of −π

3 .” Thus, the polar
coordinates of P at time t = 0 are given by v(0) =

(
v0,

π
3

)
and, at time t = T ,

v(T ) =
(
v0,−π

3

)
.
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• “The magnitude of the boy’s acceleration is always µg” (i.e., |r′′(t)| = µg) becomes
“the speed of P is always µg” (i.e., |v′(t)| = µg).

• “The boy starts at A at t = 0 and ends at B at t = T” (i.e., r(T )− r(0) =
−−→
AB = âı)

becomes “X :=
∫ T
0 v(t) dt = âı.”

Also, because we assumed the trajectory is symmetric (i.e., r(t) is r(T − t) reflected
across the vertical), the trajectory of P is also symmetric: r′(t) = v(t) is r′(T − t) =
−v(T − t) reflected across the vertical, or in other words, v(t) is v(T − t) reflected across
the horizontal.

4.2 Minimizing T with a fixed is equivalent to maximizing a with T fixed

We now wish to minimize T subject to the three conditions stated above while fixing a and
µg. We show that this is equivalent to maximizing a while fixing T and µg. As we have
shown before, the minimum period Tm is a strictly-increasing function f(a) of the size a
of the triangle (see third observation in Section 1). Now, the feasible (T, a) for a fixed µg
are described by the inequality T ≥ f(a), which is equivalent to a ≤ f−1(T ) because f is
strictly increasing. So the problem of finding Tm given a and µg is equivalent to finding am,
i.e., the maximum a given T and µg. Hence, from now on, we fix T and µg and maximize
a subject to the three conditions listed.

4.3 Equivalent problem of minimizing the potential energy of a rope in
velocity space

Now that we’ve fixed T , note that P traces out a path p of fixed length L = µgT in
velocity space, where µg is P ’s speed. In addition, recalling the symmetry of P ’s trajectory,
X :=

∫ T
0 v(t) dt points in the x-direction, so maximizing a where X = âı is equivalent to

maximizing a = X · ı̂.
On the other hand, imagine p as a rope of uniform unit linear density. Its length is

given (L = µgT ) and its two ends are at
(
v0,

π
3

)
and

(
v0,−π

3

)
where v0 can be chosen

freely. Maximizing X · ı̂ is then equivalent to maximizing

µgX · ı̂ =
∫
p
ṽ(s) ds · ı̂, (1)

where ds = µg dt is the length of a small piece of the rope and ṽ(s) = v(t) is p parameterized
by arc length. But recall that a differential element of the rope between s and s+ ds has
mass ds and position vector ṽ(s), so when subjected to a unit uniform gravitational field ı̂,
the rope element’s gravitational potential energy is −(ds)ṽ(s) · ı̂. In other words, the RHS
of (1) is just negative the potential energy of the rope. So to maximize (1), we minimize
the potential energy of the rope.

When the potential energy of the rope is minimized, it’s in equilibrium, and we can
deduce the equilibrium configuration of the rope using statics.
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4.4 Solving the equivalent problem of a rope in velocity space

We have a uniform rope of length L = µgT and unit linear density with each end
attached to a long rod. One rod is a ray from the origin O pointing in the direction of
π/3, and the other rod is a ray from O pointing in the direction of −π/3. The ends of
the rope are free to slide frictionlessly along the rods, and the whole system is in a unit
uniform gravitational field ı̂. We wish to find the configuration of the rope at minimum
potential energy, where the rope will be in equilibrium. For now, we ignore the constraint
that the two ends of the rope must be the same distance v0 from O: it will turn out that
the equilibrium configuration of the rope automatically satisfies that constraint.

A differential element at one end of the rope receives a normal force from the rod and
tension from the rope, which must cancel. Therefore, tension is perpendicular to the rod
at each end of the rope, meaning the rope makes 90◦-angles with the rods.

The rope takes on the shape of a catenary, the equation of which we will now derive.
We will work in the coordinate system x̃Õỹ where the origin Õ is at the point on the

rope where the tangent is vertical. Now, consider a point P (x̃, ỹ) on the rope, and consider
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the rope segment between Õ and P . It experiences three forces:

• Downward tension F0 at the bottom end;

• Tension F at the top end, at an angle ϕ from the vertical;

• Gravity mg = s to the right, where s =
∫ ỹ
0

√
1 +

(
dx̃
dỹ

)2
dỹ is the length of the

segment.

Force balance in the vertical direction gives F cosϕ = F0, and force balance in the horizontal
direction gives

s = F sinϕ = F0 tanϕ

s2 = F 2
0

(
sec2 ϕ− 1

)
s2 = F 2

0

((
ds

dỹ

)2

− 1

)
ds

dỹ
=

√(
s

F0

)2

+ 1∫ s

0

ds√
(s/F0)

2 + 1
=

∫ ỹ

0
dỹ

F0 sinh
−1

(
s

F0

)
= ỹ

s = F0 sinh

(
ỹ

F0

)

x̃ = −
∫ ỹ

0

√(
ds

dỹ

)2

− 1 dỹ

= −
∫ ỹ

0

√
cosh2

(
ỹ

F0

)
− 1 dỹ

= −
∫ ỹ

0
sinh

(
ỹ

F0

)
dỹ

x̃ = −F0 cosh

(
ỹ

F0

)
.

Now, at each end of the rope, the rope is perpendicular to the rod at that end, meaning
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ϕ = ±π/3 (π/3 at the top end and −π/3 at the bottom end). In other words,

−dx̃

dỹ
= tanϕ = tan

(
±π

3

)
sinh

(
ỹ

F0

)
= ±

√
3

ỹ = ±F0α,

where
α := sinh−1

√
3 = cosh−1 2 = ln

(
2 +

√
3
)
.

So, the total length of the rope is

L = s|ỹ=F0α − s|ỹ=−F0α

= 2F0 sinh (α)

= 2
√
3F0

F0 =
L

2
√
3
.

Now, at the two ends of the rope, ỹ = ±F0α and x̃ = −F0 cosh
(

ỹ
F0

)
= −F0 coshα =

−2F0. Therefore, while O has ỹ-coordinate 0 by symmetry, its x̃-coordinate is

−2F0 −
F0α√

3
= −

(
2 +

α√
3

)
F0.

Therefore, to transform back to the coordinate system where O is the origin, we use

x = x̃+

(
2 +

α√
3

)
F0

y = ỹ.

So, the equation of the rope is given by

x =

(
2 +

α√
3
− cosh

(
y

F0

))
F0, (2)

where F0 = L/2
√
3.
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4.5 Finishing up

Equation (2) gives the rope’s configuration at minimum potential energy, where a is max-
imized to

am = X · ı̂

=
1

µg

∫
p
ṽ(s) ds · ı̂ (recall (1))

=
1

µg

∫
p
x ds

=
1

µg

∫ F0α

−F0α
x
ds

dy
dy

=
1

µg

∫ F0α

−F0α

(
2 +

α√
3
− cosh

(
y

F0

))
F0 cosh

(
y

F0

)
dy

=
F 2
0

µg

∫ α

−α

(
2 +

α√
3
− coshu

)
coshu du (y = F0u)

=
L2

12µg

∫ α

−α

[(
2 +

α√
3

)
coshu− cosh2 u

]
du

=
1

12
µgT 2

[(
2 +

α√
3

)
sinhu− 1

2
sinhu coshu− 1

2
u

]α
−α

=
1

6
µgT 2

((
2 +

α√
3

)
sinhα− 1

2
sinhα coshα− 1

2
α

)
=

1

6
µgT 2

(
2
√
3 + α−

√
3− 1

2
α

)
=

1

12
µgT 2

(
2
√
3 + α

)
.

(We’ve used the fact that
∫
cosh2 u du = 1

2

∫
(cosh 2u + 1) du = 1

4 sinh 2u + 1
2u + C =

1
2 sinhu coshu+ 1

2u+ C.)
Therefore, the minimum T at a given a satisfies

a =
1

12
µgT 2

m

(
2
√
3 + α

)
Tm = 2

√
3

2
√
3 + α

a

µg
≈ 1.584

√
a

µg
. (3)

This result is less than the 2
√

a
µg we got in Case 1 (Section 3), so (3) indeed gives the

minimum T over all possible trajectories of the boy.
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To conclude, the minimum period of the boy is

Tm = 3Tm = 6

√
3

2
√
3 + α

a

µg
,

where
α = ln

(
2 +

√
3
)
.
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5 Appendix: Proof of symmetry for the period-minimizing
trajectory

We later discovered that the proof here is wrong. But I think it would be cool
to put the wrong proof here anyways. Figuring out why it is wrong is left as
an exercise for the reader :P

Given any valid trajectory in physical space (one that has constant acceleration mag-
nitude and passes through the vertices of the house), we can consider the corresponding
trajectory in velocity space, which can be thought of as a closed rope of unit uniform linear
density. Divide the velocity trajectory into 3 sections, one for each side of the triangle the
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boy is on. Let there be a unit uniform force field acting on each section in the direction
parallel to the side of the house it pertains to. A valid trajectory in velocity space must
satisfy the following constraints:

1. Consider one section (WLOG let it be the section corresponding to the AB). The
potential energy of the rope is equal to negative the side length of the house −µga
(recall (1)). (We define the origin to be at zero potential.)

2. Consider the same section. The integral of the y-component over arc length is 0.

3. The total potential energy of the system is equal to −3µga. (Note that this is strictly
weaker than constraint 1)

4. The entire trajectory in velocity space must be continuous.

The goal is to minimize the total length of the rope L = µgT . Let’s ignore the first
2 constraints and solve the resulting problem. It will turn out that the solution will
automatically satisfy the first 2 constraints.

As shown before, minimizing L with a given is equivalent to maximizing a with L given.
But that’s just equivalent to minimizing the total potential energy −3µga of the system.

When potential energy is minimized, the system is in static equilibrium. Therefore,
the three forces on the three sections of the rope cancel. The three force vectors form an
equilateral triangle, meaning that they all have the same magnitude. But the force on each
section of the rope has magnitude equal to its length, which implies that the three sections
of the rope have equal length.
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Second, let the three sections of the rope have endpoints X,Y, Z (so the ropes are XY ,
Y Z, and ZX). Let XY, Y Z,ZX be in unit uniform gravitational fields ı̂, ȷ̂, k̂, where ı̂ is in

∠XOY , etc. Then we show that ∠(
−−→
OX, ı̂) = ∠(

−−→
OY , ı̂) = π/3, and similarly for the fields

ȷ̂ and k̂. Suppose not. Then, WLOG, let ∠(
−−→
OX, ı̂) < π/3 and ∠(

−−→
OX, k̂) > π/3. Then

−−→
OX · ı̂ >

−−→
OX · k̂. Thus, if we consider the region within the angle ∠XOP , where P is a

point in the field k̂ close to the border OX between the fields ı̂ and k̂, we can change the
field in that region from k̂ to ı̂. Then the potential energy of the tiny rope segment inside

that region will decrease because of
−−→
OX · ı̂ >

−−→
OX · k̂. Hence, the original configuration was

not at its minimum potential energy.The potential energy of the rest of the rope hasn’t
changed, so the potential energy of the entire rope decreased. We can then shrink the entire
rope again slightly to raise the potential energy of the rope back to −3µga, but the total
length of the rope has then been reduced. Therefore, when potential energy is minimized,

∠(
−−→
OX, ı̂) = ∠(

−−→
OY , ı̂) = π/3, and similarly for ropes Y Z and ZX.

Thus, it remains to minimize the potential energy of each rope segment (which has
the same length, as we have shown), where the potential field ı̂ is restricted in the region

∠XOY where ∠(
−−→
OX, ı̂) = ∠(

−−→
OY , ı̂) = π/3, and similarly for the fields ȷ̂ and k̂. This was

done in Section 4.
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