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The outline of the solution is as follows. Firstly, I will make a few preliminary remarks regarding the symmetry,
shape and size of the trajectory. Then, I will use methods from the calculus of variations to find under what
conditions the time is minimal. Finally, I will numerically calculate the minimal time needed for a complete loop.
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1 Initial considerations

• The only length scale in the problem is the side length of the house, a, and the only acceleration scale is the
maximal acceleration due to friction, µg (since the vertical gravitational acceleration itself doesn’t directly
affect the motion in the horizontal plane at all). Using dimensional analysis, it can immediately be seen that
the expression for the minimal time, Tm, must be of the form

Tm = C

√
a

µg
≡ Cτ, (1)

where C is a constant that will, in what follows, be found.

• According to (1), the time decreases for decreasing a. This means that the optimal trajectory is as tight as
possible around the house. If the trajectory would not touch any one of the vertices of the triangle, then
it would always be possible to shrink it (and eventually translate it) so that it keeps the same shape, up to
homothety. And such a shrinkage would invariably lead to a decrease in the time needed. So, the optimal
trajectory is one that touches all three of the vertices of the triangle.

• If the curve defining the trajectory would contains kinks (points where the first derivative of the function
is not continuous), then their presence would require that the boy have a speed of 0 in that point (because
the first derivative of the speed of the boy is always continuous). This is almost certainly not to be wanted
(because there a would be a significant time excess needed for the boy to stop, then start moving again). So,
I will search for trajectories that do not contain kinks.

• At any time, the frictional force can be used either to increase the speed of the boy or to tighten its trajectory.
Both modes of usage lead to a shortening of the time. And the frictional force can be used at all times in
this scope. Hence, the optimal trajectory is one on which the absolute value of the acceleration due to
the frictional force is always maximal, that is, it is µg.

• If the trajectory were not rotationally symmetric, then there would be multiple trajectories that lead to
the same minimal time (one could simply rotate a trajectory by 2π/3 or 4π/3). This is unlikely, and so a
reasonable assumption is that the trajectory has rotational symmetry of order 3. Furthermore, the same
would occur if the trajectory would not have mirror symmetry with respect to any axis of symmetry of the
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triangle. Hence, I will also assume that the trajectory has such symmetry. In what follows, I will group these
assumptions under the name of the assumption of symmetry.

• Under the assumption of symmetry, let Tside be the time needed to move from a vertex to the next. Then,
T = 3Tside (where T is the time needed to make a full loop) and the problem reduces to that of finding the
minimal Tside (under certain conditions, discussed below).

• Assuming that the trajectory is symmetric, the angle between the velocity vector and the radial direction
must be the same on both sides of a vertex of the triangle. Coupled with the assumption of no kinks, this
implies that the velocity vector in such a point must be tangential, which further means that the angle
between the velocity in a vertex and the next side of the triangle is 60◦.

• Several other consequences of the symmetry of the trajectory are:

– The speed of the boy in each of the vertices is the same; let this speed be called v0.

– The trajectory is also symmetric with respect to the perpendicular bisector of a side. Using the notations
in the figure below, this means that the velocity of the boy in point M is tangential.

– For the same reasons, the time it takes to get from A to M is the same as the time it takes to get from
M to B. Let T0 be this time. Then, according to what was said above, Tm = 6T0, and the problem
reduces to minimizing T0, under the conditions stated above.

Let us sum up what was said above. Under the assumption of symmetry, we have reduced the problem to that
of minimizing T0, under the following conditions:

• The velocity vA is at an angle of 60◦ from the side AB of the triangle.

• Point M is situated on the perpendicular bisector, i.e. xM = a/2.

• The y-component of the velocity in M is 0.

• The acceleration of the boy is always µg in magnitude.

Figure 1: An example trajectory of the boy from A to B

2 Minimization of the time

2.1 Expressing the integrals I1 and I2

Note: From now on, the solution only considers the motion of the boy from A to M .
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The direction of the acceleration can be any; its magnitude is constant. To describe the time evolution of the
vector a, I will define θ(t) to be the angle between the acceleration and the negative y-axis, with counter-clockwise
taken to be positive1. The time t is taken to be 0 when the boy is in A; it will be T0 when he reaches M .

Using this notation, the equations of motion of the boy are

v̇y = −µg cos θ;

v̇x = µg sin θ.
(2)

Integrating the first of these from t = 0 to t = T0 we get

vy,M − vy,A = −µg

∫ T0

0

cos θdt. (3)

But vy,A = v0 sin 60
◦ =

√
3
2 v0, and vy,M = 0, so that

I1 ≡
∫ T0

0
cos θdt =

√
3
2

v0
µg . (4)

Noting that vx,A = v0 cos 60
◦ = 1

2v0, we can integrate the second equation from (2) twice to obtain

xM − xA =
1

2
v0T0 + µg

∫ T0

0

∫ t

0

sin θdt′dt, (5)

where the inner integral (whose variable is t′) goes from 0 to t, and the outer one (whose variable is t), from 0 to
T0. In shorthand notation, I will write this as

xM − xA =
1

2
v0T0 + µg

∫∫ T0

0

sin θdt2. (6)

Since xA = 0 and xM = a/2,

I2 ≡
∫∫ T0

0
sin θdt2 = a

2µg − 1
2
v0T0

µg . (7)

We have thus obtained expressions for two integrals - I1 and I2 - that are related to the function θ(t) in terms
of a, µ, g, v0 and T0.

2.2 Maximizing I2

Considering particular, known values of v0 and T0, Eq. (4) tells us something about the function θ(t). Eq. (7),
on the other hand, also depends on a. So by considering a to be a ”variable” (which is not true, but is good enough
for the present purposes), we see that we can maximize it by maximizing I2. And we know that, if we maximize a
for a certain value of T , we minimise T for that value of a, due to the dimensional arguments in Section 1. Hence,
we need to maximize I2, considering Eq. (4) known and true.

If θ(t) is a function that maximizes I2, then I2 must not have any first order change under small changes in
θ(t), i.e. functions of the form θ(t) + ϵ(t), with infinitesimal ϵ.

However, according to Eq. (4) and considering that v0 is fixed, any such change must keep I1 unchanged. This
means that

I1(θ(t) + ϵ(t)) = I1(θ(t)) =⇒
∫ T0

0

cos(θ(t) + ϵ(t))dt =

∫ T0

0

cos θ(t)dt. (8)

1By this, I mean that the angle is positive if, starting from the negative y-axis, one has to revolve counter-clockwise to reach the
direction of the acceleration.

3



Physics Cup ’22 - Problem 2 Vlad-S, tefan Oros, Romania - December 19, 2021

But cos(θ(t) + ϵ(t)) = cos θ(t)− ϵ(t) sin θ(t), so that, reducing like terms, we get∫ T0

0
ϵ(t) sin θ(t)dt = 0. (9)

Similarly, the condition on the invariance of I2 is equivalent to∫∫ T0

0

ϵ(t) cos θ(t)dt2 = 0. (10)

More explicitly, this means that ∫ T0

0

∫ t

0

ϵ(t′) cos θ(t′)dt′dt = 0. (11)

We see that the integrand is a function of t only through the upper limit of the inner integral. For a particular
value of t′, we see that the same term - ϵ(t′) cos θ(t′) - appears for all values of t greater than t′ and is absent for
t < t′. Therefore, in the resulting integration, this term will be multiplied by a factor of T0 − t′, which is the time
from t′ until the end of the integration, so that the above equation is further equivalent to∫ T0

0

(T0 − t′)ϵ(t′) cos θ(t′)dt′ = 0, (12)

or, by changing the name of the variable, ∫ T0

0
(T0 − t)ϵ(t) cos θ(t)dt = 0. (13)

The only way in which Eq. (13) can be true for all ϵ(t) satisfying Eq. (9) is if the function by which ϵ(t) is
multiplied is the same (or if one is a constant multiple of the other):

(T0 − t) cos θ(t) = A sin θ(t) =⇒ tan θ(t) = T0−t
A , (14)

for some constant A. Hence, this is the form that a function θ(t) that maximizes I2 - and hence minimizes the time
- must take.

3 Calculation of the minimal time

Let us define θ0 through

θ0 = arctan
T0

A
. (15)

θ0 is the initial value of θ. Using this notation, we see that

tan θ =
T0 − t

T0
tan θ0. (16)

We will have, then,

cos θ =
A√

A2 + (T0 − t)2
=⇒ I1 =

1

2
A ln

(
2T0(

√
A2 + T 2

0 + T0

A2
+ 1

)
=

T0

2
cot θ0 ln

(
1 + sin θ0
1− sin θ0

)
; (17)

and

sin θ =
T0 − t√

A2 + (T0 − t)2
=⇒

∫ t

0

sin θ(t)dt =
√
A2 + T 2

0 −
√
A2 + (T0 − t)2, (18)
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so that, by integrating again,

I2 =
1

2

(
T0

√
A2 + T 2

0 −A2 ln

(√
A2 + T 2

0 + T0

A

))
=

T 2
0

4

(
2

sin θ0
− cot2 θ0 ln

(
1 + sin θ0
1− sin θ0

))
. (19)

Eq. (4) now tells us that

T0

2
cot θ0 ln

(
1 + sin θ0
1− sin θ0

)
=

√
3

2

v0
µg

, (20)

while Eq. (7) will mean that

T 2
0

4

(
2

sin θ0
− cot2 θ0 ln

(
1 + sin θ0
1− sin θ0

))
=

a

2µg
− 1

2

v0T0

µg
. (21)

Together, Eqs. (20) and (21) theoretically allow us to solve for both T0 and θ0 in terms of a, µ, g and v0.
However, we are not interested in the value of T0 for a particular value of v0 - instead, we want to know the
minimum value of T0 for any value of v0.

Since v0 is the only actual variable in the above system of equations, let us consider θ0 and T0 to be functions
of v0: θ0 = θ0(v0), T0 = T0(v0). Due to the above two equations, both θ0 and T0 are well-defined and unique for a
particular value of v0.

Now, let us search for the smallest possible value of T0. For this value, changing v0 by a small amount will not
lead to any first-order change of T0 - in other words, the derivative of T0 with respect to v0 is 0. There is no such
constraint on θ0, though; therefore, the derivative with respect to v0 of the left side of both Eqs. (20) and (21)
must be only due to the variation of θ0. This means that

T0

2

d

dv0

(
cot θ0 ln

(
1 + sin θ0
1− sin θ0

))
=

√
3

2

1

µg
(22)

and
T0

4

d

dv0

(
2

sin θ0
− cot2 θ0 ln

(
1 + sin θ0
1− sin θ0

))
= −1

2

1

µg
, (23)

where we have calculated the derivative on the right side and, in the case of Eq. (23), simplified through T0.

Dividing Eqs. (22) and (23), we find that

d

dv0

(
cot θ0 ln

(
1 + sin θ0
1− sin θ0

))
= −

√
3

2

d

dv0

(
2

sin θ0
− cot2 θ0 ln

(
1 + sin θ0
1− sin θ0

))
, (24)

or, expressing the derivatives and simplifying through dθ0
dv0

,

csc θ0

(
2− csc θ0 ln

(
1 + sin θ0
1− sin θ0

))
= −

√
3 csc θ0 cot θ0

(
− 2 + csc θ0 ln

(
1 + sin θ0
1− sin θ0

))
. (25)

Since csc θ0 ̸= 0, we get

2− csc θ0 ln

(
1 + sin θ0
1− sin θ0

)
=

√
3 cot θ0

(
2− csc θ0 ln

(
1 + sin θ0
1− sin θ0

))
, (26)

which is equivalent to (
2− csc θ0 ln

(
1 + sin θ0
1− sin θ0

))
(1−

√
3 cot θ0) = 0. (27)
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The first factor is 0 only for θ0 = 0, which is not the case. So we are left with

√
3 cot θ0 = 1 =⇒ θ0 = arctan

√
3 =⇒ θ0 =

π

3
. (28)

Introducing the expression for v0 from Eq. (20) into Eq. (21), we get

a

µg
=

T 2
0

2

(
2

sin θ0
− cot2 θ0 ln

(
1 + sin θ0
1− sin θ0

))
+

T 2
0√
3
cot θ0 ln

(
1 + sin θ0
1− sin θ0

)
, (29)

or

T0 =
1√

1
sin θ0

− 1
2 cot

2 θ0 ln
(

1+sin θ0
1−sin θ0

)
+ 1√

3
cot θ0 ln

(
1+sin θ0
1−sin θ0

)√ a

µg
. (30)

Numerically, we find that

T0 =

√
6

4
√
3 + ln

(
7 + 4

√
3
)√ a

µg
≈ 0.7921

√
a

µg
,

so that, finally,

Tm = 6T0 =⇒ Tm = 4.753
√

a
µg .

4 Appendix: Generalization to arbitrary regular polygons

We can generalize the above solution to the case in which the house has the shape of an arbitrary N -gon.
Defining T0 similarly, we will now have

Tm = 2NT0, (31)

and the angle between vA and the corresponding side AB will be π
N . Using this fact, we will have

I1 =
v0
µg

sin
π

N
(32)

and

I2 =
a

2µg
− v0T0

µg
cos

π

N
. (33)

The result of using the methods of calculus of variations shown in section 2 - Eq. (14) - is still true, as it doesn’t
depend on the specific form of the expressions of I1 and I2, and so are the expressions for I1 and I2 in terms of θ0
and T0, Eqs. (17) and (19).

Continuing along the lines of reasoning shown in section 3, we have:

dI1
dv0

=
1

µg
sin

π

N
(34)

and
dI2
dv0

= −T0

µg
cos

π

N
(35)

for the case where T0 is minimal. Using the two above relationships, we find that

d

dv0

(
cot θ0 ln

(
1 + sin θ0
1− sin θ0

))
= − tan

π

N

d

dv0

(
1

sin θ0
− 1

2
cot2 θ0 ln

(
1 + sin θ0
1− sin θ0

))
, (36)
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or, expressing the derivatives and simplifying through dθ0
dv0

,

csc θ0

(
2− csc θ0 ln

(
1 + sin θ0
1− sin θ0

))
= − tan

π

N
csc θ0 cot θ0

(
− 2 + csc θ0 ln

(
1 + sin θ0
1− sin θ0

))
, (37)

from which we find that (
2− csc θ0 ln

(
1 + sin θ0
1− sin θ0

))(
1− tan

π

N
cot θ0

)
= 0. (38)

Since θ0 ̸= 0, this means that

1− tan
π

n
cot θ0 = 0 =⇒ θ0 =

π

N
. (39)

Hence, we will have

I2 =
a

2µg
− I1T0 cot

π

N
, (40)

or
a

2µg
=

T 2
0

2
cot2

π

N
ln

(
1 + sin π

N

1− sin π
N

)
+

T 2
0

2

(
1

sin π
N

− 1

2
cot2

π

N
ln

(
1 + sin π

N

1− sin π
N

))
(41)

or

T0 =
1√

1
sin π

N
+ 1

2 cot
2 π

N ln
(

1+sin π
N

1−sin π
N

)√ a

µg
. (42)

Hence,

Tm = 2NT0 =⇒ Tm = 2N√
1

sin π
N

+ 1
2 cot2 π

N ln

(
1+sin π

N
1−sin π

N

)√ a
µg . (43)

N T , in units of
√

a
µg

2 4.000

3 4.753

5 5.794

10 7.992

50 17.73

Table 1: A few numerical values for Tm

Note: The result Tm = 4
√

a
µg

in the case N = 2 is understood as the limit N → 2. In this case, the house has the

shape of a line segment, and the ideal trajectory corresponds to stopping at the ends of this segment and accelerating - and

deccelerating - along the sides of this segment.
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The limit N → ∞

In the limit of large N , we have

π

N
≪ 1rad =⇒ sin

π

N
≃ π

N
, cot

π

N
≃ N

π
. (44)

Additionally,

ln

(
1 + sin π

N

1− sin π
N

)
≃ 2

π

N
. (45)

Hence,

Tm ≃ 2N√
N
π + 1

2
N2

π2 2
π
N

√
a

µg
=⇒ Tm ≃

√
2Nπ

√
a

µg
. (46)

Now, let the circumradius of the N -gon pe R. Then, we will have

a = 2R sin
π

N
=⇒ a ≃ 2πR

N
; (47)

plugging this into Eq. (46), we find that

Tm ≃ 2π

√
R

µg
, (48)

which is, as expected, just the time needed to make a circle of radius R.
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