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Relativistic units are used in the entirety of this paper.

Consider the following: An object of mass m at rest in frame S is accelerated via the
emission of a single photon. The proper final mass of the object is given by xm, where
0<kr<l

Lemma 1. The final energy and momentum (magnitude) of the object as observed in frame
S is given by
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Proof. Let P;, Py and P, be the 4-momenta of the initial object, final object and photon
respectively. In frame S, these take the form
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where all symbols are defined as above. By the conservation of 4-momentum, we can solve
for F,
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where we have used the fact that light-like vectors are of length zero. Using the mass-shell
relation, one can easily find the associated momentum,
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which concludes the proof.

Corollary 2. The same formulas apply if the object is accelerated via the emission of a
series of photons in the same direction.

Proof. As the series of photons emitted are in the same direction, their 4-momenta are
linearly dependent (due to the vector being light-like). Thus, their vector sum is also light-
like, and the above proof(s) follow.

The implication of this is that the final momentum of the rocket only depends on the
mass lost during the two phases of acceleration; in other words the specific thrust profile is
of no physical significance, and the total acceleration (during each acceleration phase) might
as well be due to a single photon.

We now perform our analysis in the intermediate frame S, that is, the frame of the rocket
just after the first acceleration phase. Letting m,, = nm and m; = fm be the intermediate
and final masses of the rocket respectively, we derive the final energy and momentum of the
rocket using equation 1.
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To derive the initial energy and momentum of the rocket observed from S, we first
calculate the corresponding intermediate quantities observed from the initial frame S’,
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from which we observe that dividing by 7 yields the correct quantities.
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Note that we have used the fact that the Lorentz factor v is the same for a boost and its
inverse, as well as the fact that the relative velocity takes on a minus sign when switching
between frames.

We will now make use of the invariant nature of 4-vector dot products. Namely, we will
evaluate P; - Py in both frame S and S’. Firstly in S, we have the following.

P; - Py = (E;,—p;,0,0) - (Ef,pscosa, prsina, 0) = E;Ef + ppg cosa
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Next in frame S’, observe that P; = (m,0,0,0). Thus the dot product only depends on the
temporal component of Py, which is the final energy of the rocket.
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where v can be calculated directly from the final speed of the rocket provided in the question.
y=(1—=v?)""*=(1-16/257"% = (9/25)"/* = 5/3 (7)

Finally equating equations 5 and 6, we can solve for cos a,
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which we need to maximize in 7. Close observation of equation 8 reveals that this is equivalent
to minimizing n* + f2/n* (in the denominator), which is a straightforward calculus exercise.
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Substituting into equation 8 we obtain
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where we have used the calculated result for v in equation 7 and f = 1/4 as provided in the
question. Thus the final answer to the question is given by

Qmin, = arccos (5/27) (10)



