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Relativistic units are used in the entirety of this paper.

Consider the following: An object of mass m at rest in frame S is accelerated via the
emission of a single photon. The proper final mass of the object is given by κm, where
0 < κ < 1.

Lemma 1. The final energy and momentum (magnitude) of the object as observed in frame
S is given by
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Proof. Let Pi, Pf and Pp be the 4-momenta of the initial object, final object and photon
respectively. In frame S, these take the form

Pi = (m, 0, 0, 0)

Pf = (E, p, 0, 0)

Pp = (p, p, 0, 0)

where all symbols are defined as above. By the conservation of 4-momentum, we can solve
for E,
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where we have used the fact that light-like vectors are of length zero. Using the mass-shell
relation, one can easily find the associated momentum,
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which concludes the proof.

Corollary 2. The same formulas apply if the object is accelerated via the emission of a
series of photons in the same direction.

Proof. As the series of photons emitted are in the same direction, their 4-momenta are
linearly dependent (due to the vector being light-like). Thus, their vector sum is also light-
like, and the above proof(s) follow.

The implication of this is that the final momentum of the rocket only depends on the
mass lost during the two phases of acceleration; in other words the specific thrust profile is
of no physical significance, and the total acceleration (during each acceleration phase) might
as well be due to a single photon.

We now perform our analysis in the intermediate frame S, that is, the frame of the rocket
just after the first acceleration phase. Letting mm = ηm and mf = fm be the intermediate
and final masses of the rocket respectively, we derive the final energy and momentum of the
rocket using equation 1.
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To derive the initial energy and momentum of the rocket observed from S, we first
calculate the corresponding intermediate quantities observed from the initial frame S ′,
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from which we observe that dividing by η yields the correct quantities.
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Note that we have used the fact that the Lorentz factor γ is the same for a boost and its
inverse, as well as the fact that the relative velocity takes on a minus sign when switching
between frames.

We will now make use of the invariant nature of 4-vector dot products. Namely, we will
evaluate Pi · Pf in both frame S and S ′. Firstly in S, we have the following.

Pi · Pf = (Ei,−pi, 0, 0) · (Ef , pf cosα, pf sinα, 0) = EiEf + pipf cosα
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Next in frame S ′, observe that Pi = (m, 0, 0, 0). Thus the dot product only depends on the
temporal component of Pf , which is the final energy of the rocket.
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where γ can be calculated directly from the final speed of the rocket provided in the question.

γ =
(
1− v2

)−1/2
= (1− 16/25)−1/2 = (9/25)−1/2 = 5/3 (7)

Finally equating equations 5 and 6, we can solve for cosα,
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which we need to maximize in η. Close observation of equation 8 reveals that this is equivalent
to minimizing η2 + f 2/η2 (in the denominator), which is a straightforward calculus exercise.
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Substituting into equation 8 we obtain
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where we have used the calculated result for γ in equation 7 and f = 1/4 as provided in the
question. Thus the final answer to the question is given by

αmin = arccos (5/27) (10)
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