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Let us begin by consider the dynamics of the photon rocket without changing directions.
Suppose that the rocket starts at rest with mass m and starts accelerating in the +x̂ direction
until it has mass κm.

Denote the final energy of the rocket be E and the total momentum of the photons be p (in
the −x̂ direction). By conservation of energy and momentum, we have

mc2 = E + pc

0 =
1

c

√
E2 − (κmc2)

2 − p

We may solve for E by eliminating p,(
mc2 − E

)2
= E2 −

(
κmc2

)2
.

E =
1 + κ2

2
mc2.

Now, by substituting the velocity of the rocket into the expression for E, we have

1√
1− v2/c2

· κmc2 = E =
1 + κ2

2
mc2

Unsurprisingly, v/c depends only on κ. We obtain

v2/c2 = 1−
(

2κ

1 + κ2

)2

=
(1 + κ)2 · (1− κ)2

(1 + κ2)
2

Thus, we can say that, as a function of κ, the final velocity attained is

v(κ) =
1− κ2

1 + κ2
· c. (1)

Returning to the original problem, suppose that the rocket burned κ1 of its mass, it will be
moving at speed v1, relative to the initial rest frame. Call the instantaneous frame the rocket
currently is in S.

In S, the rocket will turn an angle α, and then burn through another κ2 of its mass, where
κ1κ2 = 1/4. In S, the final speed of the rocket will be v2.

Without loss of generality, let v1 be in the direction of +x̂ relative to the initial rest frame.
By relativistic velocity addition, we know that the final velocity vf with respect to the initial
rest frame will be

vf,x =
v1 + v2 cosα

1 + v1v2 cosα
and vf,y =

√
1− v21 ·

v2 sinα

1 + v1v2 cosα

1
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For convenience, we have dropped all factors of c. The final speed is then given by

v2f =
[
v21 + 2v1v2 cosα+ v22 cos

2 α+ v22 sin
2 α− v21v

2
2 sin

2 α
]
·
(

1

1 + v1v2 cosα

)2

=
[
v21 + v22 + 2v1v2 cosα− v21v

2
2 + v21v

2
2 cos

2 α+ 1− 1
]
·
(

1

1 + v1v2 cosα

)2

=
[
−
(
1− v21

)
·
(
1− v22

)
+ (1 + v1v2 cosα)

2
]
·
(

1

1 + v1v2 cosα

)2

and finally simplified to

1− v2f =

(
1− v21

)
·
(
1− v22

)
(1 + v1v2 cosα)

2 .

Now, we plug in the expression for v(κ) from equation (1), to obtain

1− v2f =

[
1−

(
1− κ2

1

1 + κ2
1

)2
]
·

[
1−

(
1− κ2

2

1 + κ2
2

)2
]
·
(

1

1 + v1v2 cosα

)2

=
4κ2

1

(1 + κ2
1)

2 · 4κ2
2

(1 + κ2
2)

2 ·
(

1

1 + v1v2 cosα

)2

= 16κ2
1κ

2
2 ·

[
1

(1 + κ2
1) · (1 + κ2

2) + (1− κ2
1) · (1− κ2

1) · cosα

]2
or [(

1 + κ2
1

)
·
(
1 + κ2

2

)
+
(
1− κ2

1

)
·
(
1− κ2

1

)
· cosα

]2
=

16κ2
1κ

2
2

1− v2f
(2)

Here, we have written everything in terms of α, vf , κ1κ2 and κ2
1 + κ2

2. Recall that we have
the constrain κ1κ2 = 1/4. Let x = κ2

1 + κ2
2, and plugging in vf = 4/5, we have(

17

16
+ x

)
+

(
17

16
− x

)
cosα =

5

3
.

Writing cosα in terms of x, this is equivalent to

cosα = f(x) =
29/48− x

17/16− x
. (3)

Now, we have a simple rational function in terms of x. By inspection, there is a vertical
asymptote at x = 17/16 and a horizontal asymptote towards f(x) = 1.

Recall that x = κ2
1 + κ2

2. By the constrain κ1κ2 = 1/4, the minimum value of x is 1/2. On
the other hand, the maximum value of x is 17/16, attained when one of κ is 1. Physically, a
smaller x means that the turning point is near “half way”, where half the fuel has been burnt.
A larger x means that out of the two sections of the journey, one section is longer (in terms of
κ) then the other.

To minimize α, we want f(x) to be large while maintaining f(x) ≤ 1. On the interval
(−∞, 17/16), however, x is monotone decreasing. Thus, it is optimal to take small x = 1/2, or
having the rocket turn “half way”.

Our final answer is

α = cos−1

(
5

27

)
≈ 79.328◦ (4)
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