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Call the rocket Alice.

We solve in the inertial frame R where Alice is at rest when she makes the turn. In this
frame, she starts by flying leftward at a speed 51 and accelerates towards the right. She
comes to a rest, changes her direction of thrust by an angle of «, and accelerates towards
the top-right, ending with speed (2 (Figure 1).
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Figure 1: Alice’s motion in the frame R

*The LCM of Zed and Eddie (Zed is the name Zhening goes by)



1 Amount of fuel consumption constrains 3, and 5, due to

momentum and energy conservation

Alice’s motion is divided into two phases: before the turn and after the turn.
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Figure 2: The phase before the turn

During the phase before the turn (Figure 2), energy conservation gives

where m’ is Alice’s mass when she comes to a rest and E,; is the energy of all photons

ejected so far. Momentum conservation gives
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Since photons satisfy E.1/c? = p.1/c, we get
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Figure 3: The phase after the turn

Similarly, during the phase after the turn (Figure 3), energy conservation gives
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where %m is Alice’s final rest mass and E, is the energy of all the photons ejected after

the turn. Momentum conservation gives
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Using E,2/c® = pyo/c, we get
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Comparing (1) and (2) gives the constraint that §; and 2 have to satisfy:
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2 Final speed in ground frame as a function of (i, 5o, «

AS 5'/\ R B,

Figure 4: Relationship between frame R and the ground frame

The frame R moves at a speed (5 towards the right, and Alice’s final velocity 3, in R
makes an angle a with the horizontal (Figure 4). Let’s derive the Lorentz transform for
velocities, which will give us Alice’s final velocity in the ground frame.

With a suitable definition of the origin, Alice’s position in R is given by

x' = Bact’ cos y' = Bact’ sin a.
We apply the inverse Lorentz transform to get her position and time in the ground frame:
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(4) thus gives Alice’s final velocity in the ground frame. Her final speed in the ground

frame is given by
vf =/ V2 + 2
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Note that v¢(51, B2, @) = v#(B2, b1, @), which is expected since both represent the relativis-
tic velocity addition of 3; and 3, that are an angle « apart.
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vf (B, Ba, o) = ()

3 The minimal v; at a given «

Here, we wish to minimize (5) at a given « where /31, 32 are constrained by (3).

First, we give a qualitative argument for why vy cannot be minimized when 8; = 0 or
P2 = 0. When we fix the amount of fuel expended (defined as the decrease in Alice’s rest
mass), flying in a straight path maximizes her final speed. A straight path is where the
turning point is at the start or end of Alice’s trajectory, i.e., 51 = 0 or B2 = 0. Hence,
vy achieves its maximum when 5y = 0 or 2 = 0, meaning that the minimum must be
achieved when (1, 82 > 0.

Since the minimum is not achieved at the boundary, we can use the first order con-
dition: dvy = 0 under small deviations dfi,df> constrained by (3). By symmetry of the
expressions (5) and (3), we guess that this occurs when 51 = 2. We now prove that our
guess is correct.

Lemma. For a differentiable function g(x,y) satisfying g(a,b) = g(b,a) for all a,b,
drg(c, c) = dyg(c, c).
Proof. Differentiate with respect to a the expression g(a,b) = g(b,a) to obtain
9z9(a;b) = dyg(b, a).
Setting a = b = ¢ yields the desired result. O
We take the total derivative of (3):

O ag, + 2L 4, (6)
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Recall that f(51,82) = f(B2, 1), so when f; = P2, the Lemma gives 867[;1 = 59—/52. (6) hence
becomes
0=dp; + dfs. (7)

Treating o as a constant, the total derivative of vy is

9t a8, + 2 . (8)

dvy = 95,
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Since v (B1, B2, a) = vf(f2, f1, @), we can again apply the Lemma to get 85 = gg’; Along

with (7) and (8), this yields
dvy =0,

as desired.
Hence, when vy is minimized, let $; = 82 = 5. Then (3) becomes
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The minimal vy is then

V2 +2cosa — B2sin®a

(9)

which decreases with « in the range 0 < a < 7w.' Note that, for 50 to be a feasible
final speed, v, must be at most 50 This requires that o be at least a certain value a;,

Hntuitively, for larger o, Alice’s trajectory in the ground frame can be more “bent,” so v ¢ can be smaller.
Quantitatively, setting a = cos o, we have
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Setting its derivative w.r.t. a to be negative gives

(2+26%) (1 + 6%a) —2 (2 - B + 20 + f%*) 5° <0,

which simplifies to 1 > (2 — $2)32, which is true as long as 3 # 1.



satisfying vyp (om) = %c:
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(A = cos apn)

Since |A| < 1, we get
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