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”Using straight edge and compass” is abbreviated as USEAC in the following paper.

We first assume that a concave lens was used. The only reason for this assumption is to
avoid any possible complications caused by the singularity of the transformation of a convex
lens. Note that this assumption is not restrictive in the context of this problem as the same
result can be produced by both convex and concave lenses.

We begin our discussion by proving several useful results. First, consider a concave lens
with focal length −f situated at the origin, with the optical axis overlapping the x-axis.

Lemma 1. The image of a straight line in the region x ≥ 0 is also a straight line in the the
same region.

Proof. Let line L be given by y = mx + c, x > 0. Given any point P = P (xo,mxo + c) in
L, we compute the image P ′ = P ′(xi, yi) under the transformation of the lens. Rearranging
the focal length formula,
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where we have used the fact that a virtual image has negative image distance. The height of
the image can then be obtained via the magnification formula and substituting equation 1.
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One can see that yi is a linear function in xi and is therefore a straight line as claimed. To
see that xi lies in the region x > 0 we rearrange equation 1 for xi to give
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which is clearly positive for xo > 0.

What remains to show is that this still holds true for points lying on the thin lens itself
(xo = 0). Extending line L to include the intersection with the y-axis, we see that such a
point would have coordinates P = P (0, c). However the transformation of this is trivial, as
the image of any point lying on the thin lens would just be the point itself. Substituting
xi = 0 into equation 2 we have

yi = m× 0 +
c(f − 0)

f
= c

as required. This concludes the proof.

Corollary 2. Given that the image is a straight line in the region x ≥ 0, the object must
also be a straight line in the same region.

Proof. If the mapping from a line L to its image L′ is a bijection, then the above statement
goes without question. Analysing equation 2, if L has slope m and y-intercept c, the image
L′ will have slope mi = m − c/f and y-intercept ci = c. Thus varying m or c will always
vary mi or ci, hence the mapping is injective. One can also see that any combination of mi

and ci is achievable by solving for m and c, thus the mapping is surjective. Therefore the
mapping is bijective and the proof is concluded.

We now proceed with the solution. Firstly, lemma 1 suggests that points A′B′C ′D′ must
be co-linear, or else the problem would be unsolvable. Second, corollary 2 suggests that as
long as A′B′C ′D′ all lie on the same side of the lens (or just touches the lens in the case
of x = 0), the angle of the lens does not affect the co-linearity of the original four points.
That is, the only problem is to choose the angle of the lens such that the original points are
evenly-spaced out. We observe that this also means that the perpendicular projections of
the original points onto the lens have to be equally-spaced.

Hence, We can reduce the problem to the following statement: Given a focal point F
not co-linear with A′B′C ′, we can trace rays RARBRC from F that pass through each of
these points. Noting our observation from earlier, we have to choose a plane for the lens such
that the intersection of the lens with RARBRC are evenly-spaced. We therefore propose the
following procedure.

First, the focal point F is chosen to better suit our needs. In particular, we choose F
such that ̸ A′FC ′ = π/2. This is easily achieved USEAC by taking the midpoint M of A′C ′,
then drawing a circle C centered at M with radius A′M . Then it is a well known circle
theorem which guarantees that any point F chosen along the circumference of C will have
the property specified above.

Second, since the exact position of the lens is insignificant (as long as A′B′C ′D′ are all
on the same side of the lens), we choose that the plane of the lens G passes through A′. The
validity of this choice is proved in lemma 1 via the edge case of x = 0. The precise angle of G
is chosen such that the intersection B′′ of G and RB forms an isosceles triangle A′B′′F with
A′F as its base. This again can be done easily USEAC by first finding the perpendicular
bisector h of A′F , then marking the intersection of h and RB which is B′′.

Marking the intersection of G and RC as C ′′, we now claim that |A′B′′| = |B′′C ′′| which
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validates our choice for G. We prove this claim geometrically,

h//RC (supplementary angles)

̸ MB′′B′ = ̸ B′FC ′ (alternating angles)

̸ MB′′B′ = ̸ MB′′A′ (isosceles triangle)

̸ MB′′A′ = ̸ B′′C ′′F (corresponding angles)

⇒ ̸ B′FC ′ = ̸ MB′′B′ = ̸ MB′′A′ = ̸ B′′C ′′F

⇒ ∆B′′C ′′F is isosceles.

⇒ |B′′F | = |B′′C ′′| (isosceles triangle)

⇒ |A′B′′| = |B′′F | = |B′′C ′′| (isosceles triangle)

as required, thus the choice of G is appropriate.

Using G and the existing perpendicular projections onto the plane of the lens, we can
determine the perpendicular projection of D onto G. This can be done USEAC by drawing
a circle centered at C ′′ with radius B′′C ′′, and marking the other intersection D′′ that the
circle makes with G.

Finally, we draw a line from D′′ to F and mark the intersection with the line that passes
through A′B′C ′. This is the image D′ of D. Reading off Geogebra, this point is calculated
to be D′ = D′(7.115, 2.898).
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