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Figure 1: Problem setup

1 Assumptions
ρc > ρw (1)

R > H (2)

10ρch ≪ ρwR (3)

2 Initial remarks
1. Water flow velocity directly above the ground is tangential to it because n̂ · u⃗ = 0, where u⃗ denotes the velocity

of a water element at a position r⃗ and time t: u⃗ ≡ u⃗(r⃗, t). Likewise, in cylinder’s reference frame water can
only have velocity tangential to the cylinder’s surface. Meaning that in the lab frame fluid elements in contact
with the cylinder’s top or bottom have to have a velocity component in the ẑ direction equal to cylinder’s
velocity v⃗ which is always in the −ẑ direction. v⃗ = −vẑ.

2. The fluid flow is at all times irrotational. This holds because the flow is irrotational at t = 0 (there is no
flow), and afterwards, the only forces acting on the fluid are gravitational and normal forces comming from the
ground and cylinder. There are no shear forces because of the assumption of inviscid flow. Therefore, we are
dealing with a potential flow meaning there exists a potential φ which can be used to determine the velocity
at every point in the fluid according to u⃗ = ∇φ. A corrolary of this fact is the existence of equipotential
surfaces which fluid streamlines intersect perpandicularly. Also, there aren’t any singularities in the potential.
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3. The fluid in question is water so incompressibility is assumed and the continuity equation is expressed in
the form

∮
A
u⃗ · dA⃗ = 0

4. Another consequence of no viscosity is the conservation of energy of the system water-cylinider.

5. The problem exhibits cylindrical symmetry so the fluid velocity can be expressed as a function in the distance
from the cylinder’s axis r, the vertical coordinate z and time t.

6. In this solution the separation between the cylinder and the ground h is taken as a function of time: h ≡ h(t)
and the initial separation is denoted h0. Assumption 3 holds for all h since it is decreasing from h0 to 0.

3 Kinetic energy of potential flows
In this section we relate the kinetic energy of a fluid volume V contained in between two equipotential surfaces and
the fluid flux Φ through them. Let these two surfaces be infinitesimally separated. Kinetic energy of the volume of
fluid between these surfaces is then:

dK =
1

2
ρwdw

∫
A

u2dA (4)

where dw is the distance between them A is their area and u the magnitude of velocity at each point along the
surfaces which is essentialy the same at each surface. Furthermore, because u⃗ is perpandicular to the surfaces we
can express the flux through them as

Φ =

∫
A

udA (5)

and define an average velocity ū

ū =
1

A

∫
A

udA =
Φ

A
(6)

But the average of the square ū2 over the surface A can be expressed as

ū2 =
1

A

∫
A

u2dA = ū2 + σ2 =

(
Φ

A

)2

+ σ2 (7)

where we define variance σ2 as
σ2 =

1

A

∫
A

(u− ū)2dA (8)

Therefore, the kinetic energy dK is

dK =
1

2
ρwdV

((
Φ

A

)2

+ σ2

)
(9)

Meaning that dK ≥ 1
2ρwdV (ΦA )2 – the more "unhomogenous" the velocity distribution over the surface A is, the

more kinetic energy V contains while we keep the flux Φ and equipotential surfaces the same.
This opens the possibility of comparing the kinetic energy in different parts of the fluid (although the exact form of
the velocity field remains unknown) by comparing an alternative imaginary velocity flows with larger σ2 than the
actual one.

4 Fluid motion right below the cylinder
Let’s observe what happens when cylinder drops by an infinitessimal height ds = −dh. Volume of water displaced
by the cylinder is dsR2π. This water exits the cylinder of water under the cylinder itself through its sides of area
S = 2Rπh. Equation of continuity tells us that

2RπhuS,avg =
dsR2π

dt
= vR2π (10)

uS,avg =
R

2h
v (11)

where uS,avg is defined as

uS,avg =
1

2Rπh

∫
S

u⃗ · dS⃗ (12)
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We assume a monotonously decreasing function of the ẑ component of water velocity uz from uz(z = 0) = 0 to
uz(z = h) = −v for all points on the surface S according to remark 1: uz ∈ ⟨−v, 0⟩ We have assumption 3 which
along with assumption 1 implies h ≪ R Therefore,

uS,avg ≫ v (13)

And since the component of flow velocity through the surface S paralel to it is negligible compared to the velocity
component perpandicular to it, we take the magnitude of velocity to be approximately uS,avg. (It is implausible
that u(R) depends on z1)

u(R) = uS,avg =
R

2h
v (14)

The same argument can be used for all coaxial cylindrical surfaces of some radius r < R as long as r ≫ h. But
because R ≫ 10h (due to assumptions 3 and 1) r ≫ h mostly holds.

⇒ u(r) =
r

2h
v (15)

In the calculation of kinetic energy contained it the volume of water below the cylinder in any given moment we
integrate over volume elements dV = 2πhrdr. Meaning that the integral

∫
u2dV ∝ r4 over those elements for which

equation 15 doesn’t hold (close to the axis where r is of order h ≪ R), so the kinetic energy of those elements
contributes insignificantly:

Kbc =
1

2
ρw

∫ R

0

u2dV

=
1

2
ρw

∫ R

0

r2v2

4h2
2πhrdr

=
πρwv

2

4h

∫ R

0

r3dr

Kbc =
πρwv

2R4

16h
(16)

5 Fluid motion elsewhere

Figure 2: Imaginary confinement of the flow

It is difficult to determine the exact form of the velocity field u⃗ outside of the thin region below the cylinder
or determine the kinetic energy contained in the rest of the fluid, but we may calculate approximate values for an

1A possible (if a little hand-wavy) justification for this is that potential flows for given boundary conditions have solutions of minimum
energy (Kelvin). A solution with an unecessarily wide distribution of velocities necessarily has larger kinetic energy because it grows
with u2 and thus is not a candidate for an actual solution.
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alternative velocity field which clearly has much larger kinetic energy according to the conclusions of section 3 and
show that it is still less then the kinetic energy contained below the cylinder.
Let’s imagine that the water is contained within a cylinder of radius R + kh0 and height h0 +H + kh0 where k is
some dimensionless constant (figure 2). k is taken such that

kh0ρc ≪ Rρw (17)

holds which means that k is of order 10 (assumption 3). This gives the water only a thin region along the cylinder
along which it can travel but still a lot wider than the region below it.
We estimate the kinetic energy of water to the sides and above the cylinder. To the sides we take the water to flow
with speed uside. According to the continuity condition:

usideπ
(
(R+ kh0)

2 −R2)
)
= Φ = R2πv (18)

uside =
vR2

kh0(kh0 + 2R)
(19)

The corresponding kinetic energy:

Kside =
1

2
ρwu

2
side

(
(R+ kh0)

2 −R2)
)
πH

=
πρwv

2R4H

2kh0(kh0 + 2R)

≈ πρwv
2R3H

4kh0

<
πρwv

2R4

4kh0

(20)

where the last inequality is due to assumption 2 and the approximation due to eq.17

⇒ Kside <
4

k
Kbc (21)

The region of water above the cylinder is analoguous to the one below it except its heigth is between kh0 and
(k+ 1)h0 but since eq.17 holds, analogous conclusions to those from section 4 hold because the only real difference
is the direction of the flow.

⇒ Kabove =
πρwv

2R4

16((k + 1)h0 − h)

=
Kbch

(k + 1)h0 − h)
=

Kbc

(k + 1)h0

h − 1)

≤ Kbc

k

(22)

We can ignore the energy contained in the regions connecting the mentioned regions of flow because their volume is
negligible compared to the volume above and/or below the cylinder and their flow velocity cannot be much higher
than the maximum velocity in other regions. Thus the total kinetic energy in regions not below the cylinder:

Kside +Kabove <
5

k
Kbc (23)

This kinetic energy is less than Kbc because k is of order 10, but the actual kinetic energy of the actual flow has to
be much smaller than this because of the conclusions of section 3 because our flow clearly has large variance σ2 as
it was defined there as the velocity is 0 outside of our imaginary container and has to be much larger inside of it to
preserve the flux Φ. It is reasonable assume a much more spread out flow in reality.
An objection that might be raised is that there is no guarantee that this imaginary flow has equipotential surfaces
which are the same as actual ones in this confined region. In the region where water flows upwards along the cylinder
we can actually assume this because close to the cylinder the flow must be paralel to it an thus the equipotential
surfaces have to be perpandicular to the sidewall of the cylinder just as in our imaginary flow. The flow above in
reality presumably has velocities mostly in −ẑ direction and of magnitude of order v (remark 1) because nothing
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compells it to accelerate to the degree to wich it must be below the cylinder. This means that its kinetic energy is
much less than in our imaginary flow anyway.
All of this serves to justify neglecting the water’s kinetic energy in regions other than directly below the sinking
cylinder.

K¬bc ≪ Kbc (24)

6 Conservation of energy
We can thus express the conservation of energy as:

Kbc +Kc +∆Uc +∆Uw = 0 (25)

where Kc is cylinder’s kinetic energy, ∆Uc is the change in cylinder’s gravitational potential energy when as it falls
a distance −∆h = h0 − h and ∆Uw is the corresponding change in the potential energy of the water. For Kc we
have simply:

Kc =
1

2
ρcR

2πHv2 (26)

And for the potential energies:

∆Uc +∆Uw = ρcR
2πHg∆h+ ρwR

2π∆hg(−H)

= πR2Hg(ρc − ρw)(h− h0)
(27)

Combinig equations 25, 26, 27, 16 and noticing v = −ḣ yields:

πρwḣ
2R4

16h
+

1

2
ρcR

2πHḣ2 + πR2Hg(ρc − ρw)(h− h0) = 0 (28)

We introduce the following substitutions to simplify calculation:

A =
π

16
ρwR

4

B =
1

2
ρcR

2πH

C = πR2Hg(ρc − ρw)

D = −Ch0

(29)

Thus,

A
ḣ2

h
+Bḣ2 + Ch+D = 0 (30)

⇒ ḣ = −
√

−Ch−D
A
h +B

(31)

⇒
∫ 0

h0

−dh√
−Ch2−Dh

A(1+Bh
A )

=

∫ T

0

dt (32)

According to assumptions 2 and 3:
Bh

A
=

8ρcHh

ρwR2
<

8ρch

ρwR
≪ 1 (33)

So, the above integral can be simplified:

T =

∫ 0

h0

−dh√
−Ch2−Dh

A

=
√
A

2 arcsin
√

Ch
−D

∣∣∣∣h0

0√
C

= π

√
A

C

(34)
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Finally:

T =
π

4

√
R2

( ρc

ρw
− 1)Hg

(35)

Interestingly the total sink time for the cylinder T doesn’t depend on h0 in the limit of assumption 3.
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