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1 Outline of solution

First of all, we’ll invoke conservation of energy in order to establish a relation
between the distance between the bottom of the cylinder and the bottom of the
container and its velocity, gradually excluding all the terms that can be shown
to be negligible. We’ll then proceed to integrate the equation obtained in order
to find the time needed T .

2 Preliminary assumptions

Since the fluid in non-viscous, there’s no energy dissipation due to the movement
of the fluid. Moreover, since the system exhibits cylindrical symmetry and the
cylinder is released from rest when its axis is vertical, its faces will always be
parallel to the bottom of the container and there won’t be any rotation around
its axis.

3 Calculating the total energy

Let x(t) be the distance of the bottom face of the cylinder from the bottom of
the container. We can write the total energy of the system as

E = Kc + Uc +Kw + Uw

where Kc,Kw represent the cylinder and the fluid’s kinetic energy and Uc, Uw

represent their potential energy. We’ll begin by writing down the cylinder’s
kinetic term. Since its motion is purely translational, we get

Kc =
1

2
πR2Hρcẋ

2

As for its potential energy, setting Uc = 0 for x = 0 (we’re free to do this, since
potential energy is defined only up to a constant term) gives

Uc = πR2Hρcgx
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Let’s now focus on the fluid. If its potential energy is U0 when the cylinder is
released, its energy at an arbitrary x(t) will be

Uw = U0 + πR2Hρwg(h− x)

In fact, when the cylinder moves down by a distance h−x, the portion of water
of volume πR2(h − x) will be pushed away in the surrounding space, and an
equal portion of water will occupy the same volume of space above the cylinder,
which had been left empty. The potential energy of the remaining fluid remains
unaltered and, since the cylinder’s height is H, we’ll have

∆Uw = πR2Hρwg(h− x)

from which the aforementioned formula follows. By setting

U0 = −πR2Hρwgh

(we can do this for the same reasons explained before) we get

Uw = −πR2Hρwgx

Finding its kinetic energy is trickier. We begin by calculating the contribution
from the fluid directly below the cylinder (i.e. within a distance R from its
axis, in the region below the bottom face). Since water is incompressible and
its density can be considered uniform, the velocity field satisfies the integral
continuity equation: ∮

∂V

ρwv⃗ · dA⃗ = −ṁV

where mV is the total mass of water contained in the volume V . Consider a
fictitious cylinder of radius r with axis coincident with that of the solid cylinder,
bottom base touching the floor and top base at an height x(t). Applying the
continuity equation to its volume yields∫ x(t)

0

2πrρwvr(x
′, r)dx′ = −πr2ρwẋ ⇒

∫ x(t)

0

vr(x
′, r)dx′ = −1

2
rẋ

This means that the radial velocity of the fluid is in the range of R
x ẋ; on the

other hand, its vertical velocity can be estimated to be of the same order of
magnitude of ẋ. By our assumptions

x

R
<

h

R
≪ ρw

10ρc
<

1

10

therefore the vertical motion of the fluid below the (real) cylinder can be ne-
glected. The motion of water can be considered to be approximately vortex free
in that region (since we can treat the fluid as ideal), hence∮

v⃗ · d⃗l = 0
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around every closed loop. If we apply the latter fact to a rectangular circuit
with two sides of length ϵ ≪ R with radial direction and the other two sides
oriented vertically, we get that vr(r) is independent of the distance x′ from the
bottom of the container, when r and t are fixed (up to corrections of the order of
x
R , which are negligible)(More formally, since the lenght of the horizontal sides
is much smaller than the cylinder’s radius, vr can be considered to be constant
on each side; neglecting vertical motion, the total circularion is ϵ∆vr = 0, from
which the conclusion mentioned above follows). Therefore, going back to the
continuity equation, we see that∫ x(t)

0

vr(x
′, r)dx′ = −1

2
rẋ = xvr(r) ⇒ vr = −rẋ

2x

Therefore, we can calculate the kinetic energy of the fluid below the cylinder:

Kw1 =
1

2

∫
v2dm ≈ 1

2

∫ R

0

2πρwrx
r2ẋ2

4x2
dr =

πρw
4x

∫ R

0

r3dr =
1

16
πρw

R4

x
ẋ2

Furthermore, the kinetic energy of the remaining fluid is again negligible. This
follows from the continuity equation. The water in the region above the top face
of the cylinder will be approximately at rest, giving no considerable contribution
to the total energy. The water moving around the cylinder will satisfy

πR2ẋ+Av = 0

where A is the area of the container at the level of the fluid that we’re con-
sidering, minus the area of the cylinder. As long as A

R ≫ h (i.e. the walls of
the container aren’t incredibly close to those of the cylinder), the total kinetic
energy of this portion of fluid will be proportional to

1

2
AHρw

(
ẋπR2/A

)2
=

HρwπR
4ẋ2

2A

which is much less than Kw1. Consequently, the only relevant contribution of
the fluid to the total energy is Uw +Kw1.

We can now invoke conservation of energy, as mentioned at the beginning,
with the additional conditions x(t = 0) = h, ẋ(t = 0) = 0:

E =
1

2
πR2Hρcẋ

2 +
1

16
πρw

R4

x
ẋ2 + πR2Hρcgx− πR2Hρwgx

= πR2H(ρc − ρw)gx+
1

2
πR2ẋ2

(
ρcH +

1

8
ρw

R2

x

)
= πR2H(ρc − ρw)gh

Notice that by our original assumptions, the following chain of inequalities holds:

ρcH < ρcR ≪ ρw
R2

10h
< ρw

R2

8x
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Thus, the kinetic energy of the cylinder itself is negligible; we’re left with

1

16
πρw

R4

x
ẋ2 ≈ πR2gH(ρc − ρw)(h− x) ⇒ ẋ = −4

√
gH

R2

(
ρc
ρw

− 1

)
x(h− x)

where the negative sign comes from the fact that the distance diminishes with
time. We can then separate variables and integrate:∫ 0

h

dx√
x(h− x)

= −
∫ π/2

0

2h sin θ cos θdθ√
h2 sin2 θ(1− sin2 θ)

= −π

= −4

√
gH

R2

(
ρc
ρw

− 1

)∫ T

0

dt = −4T

√
gH

R2

(
ρc
ρw

− 1

)
where the substitution x = h sin2 θ has been used. In conclusion, the time the
cylinder needs to reach the bottom of the container is

T =
πR

4

√
gH

(
ρc

ρw
− 1

)
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