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1 Introduction

This solution is organized as follows: first, I will qualitatively describe the way that the

system evolves. I will use the given conditions to justify a set of reasonable approximations

that will greatly simplify the solution. Afterwards, I will use the principle of conservation of

energy to find an expression for the falling time.

2 Qualitative description

Since everything that happens is radially symmetric with respect to the axis of the cylinder,

we will work in a system described by two coordinates: r, the radial distance from the axis

of the cylinder, and z, the height measured from the floor of the container.

The viscosity of water is considered insignificant in this problem; for this reason, I will be

able to use conservation of energy to analyze the phenomena that take place.

2.1 Beneath the cylinder

As it falls, the cylinder will set the water beneath and around it into motion. Let us first

study the way that the water directly beneath the cylinder moves.

• Due to the incompressibility of water, it’s clear that the liquid beneath the cylinder will

have a radial velocity outwards, to ensure that the water displaced by the descending

cylinder is transported outside the space between the cylinder and the floor. Let this

radial velocity be vr(r) (the velocity also depends on z, but it will be proven shortly

that this dependence is quantitatively insignificant), u be the downwards velocity of

the cylinder, and zc be the z-coordinate of the base of the cylinder. The aforementioned

conservation of water volume requires that, for the water leaving a cylinder of radius

r and height zc beneath the solid cylinder,

πr2u = 2πrzcvr(r) =⇒ vr(r) =
r

2zc
u. (1)

We know that ρwR ≫ 10ρch, while ρc > ρw, h ≥ zc, so that R ≫ 10h > 10zc.

Meanwhile, r ∈ [0, R], which means that for almost all1 values of r, vr(r) ≫ u.

1This means that the set of values of r for which the above is false is quantitatively insignificant.
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• What about the vertical velocity of the water? And what about the dependence of

the radial velocity on z? The vertical velocity of the water will be no larger than u in

absolute value - it will be −u precisely at the bottom edge of the cylinder, and it will

taper off to 0 at z = 0. The general expression of the incompressibility condition is

∇ · v = 0 =⇒ 1

r

∂

∂r
(rvr) +

∂

∂z
vz = 0. (2)

Integrating this from z = 0 to z = zc, we find that

1

r
∆(rvr) = u, (3)

where ∆(rvr) = rvr(r, zc) − rvr(r, 0) = r(vr(r, zC) − vr(r, 0)). Hence, the difference

between the maximum and minimum values of vr at a given r is u, which, as proven

above, is almost always much smaller than vr. Hence, the variation of vr with z is

insignificant and can be ignored when it comes to calculation of the kinetic energy of

the water - as can the vertical velocity of the water.

According to the above reasoning, the kinetic energy of the water beneath the cylinder is

Kw =

∫ R

0

ρw(2πrzcdr)
v2r(r)

2

=
ρwπu

2

4zc

∫ R

0

r3dr

=
ρwπR

4

16zc
u2.

(4)

2.2 In the rest of the water

The water outside the narrow space between the lower end of the cylinder and the floor

is also set in motion by the cylinder. We can consider the kinetic energy of the water to

be caused by an added mass, and we can reasonably estimate an upper bound for this

added mass: as H < R, in order of magnitude, the added mass is not greater than about

Madd ⪅ ρwπR
2 ·R = ρwπR

3.2

2This comes about for the following reason: the volume of water that is displaced has a cross-section area

roughly equal to that of the cylinder, and its length cannot be much larger than the largest of H and the

rough linear size of the cross-section, which in this case is a circle of radius R (if it were significantly larger

than the second of the above, then a very thin disk passing through water would cause a long cylinder of

water to move along with it, which is clearly false).
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How does its kinetic energy compare to that of the water beneath the cylinder? The kinetic

energy of this added mass is

Kout =
Maddu

2

2
⪅

ρwπR
3

2
u2, (5)

so that the ratio between the kinetic energies of the two bodies of water is

Kout

Kw

⪅
8zc
R

≪ 1. (6)

Hence, the motion of the water outside the narrow space mentioned above is insignificant.

3 Calculation of the time

• We can express the potential energy of the system if we consider the solid cylinder to

be a cylinder of density ρc − ρw in a medium of constant density ρw. We find that it is

U = (ρc − ρw)πR
2Hgzc (7)

with respect to the state where the cylinder is in contact with the floor.

• The total kinetic energy of the system is

K = Kw +Kadd +Kcylinder

=
ρwπR

4

16zc
u2 +Kadd +

ρcπR
2H

2
u2.

(8)

According to what was said above, Kadd is insignificant, and

Kcylinder

Kw

=
8ρczc
ρwR

· H
R

≪ 1, (9)

so that the only significant part of K is Kw.

• Initially, zc = h and u = 0. Hence, conservation of energy compels that

(ρc − ρw)πR
2Hgzc +

ρwπR
4

16zc
u2 = (ρc − ρw)πR

2Hgh

=⇒ u =

(
4

R

√
ρc − ρw

ρw
Hg

)√
zc(h− zc)

=⇒ dzc√
zc(h− zc)

= − 4

R

√
ρc − ρw

ρw
Hg dt,

(10)
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where I have used the fact that u = −dzc/dt. Integrating this from zc = h to zc = 0,

we find that the time taken for the cylinder to fall to the floor is

−
∫ h

0

dzc√
zc(h− zc)

= − 4

R

√
ρc − ρw

ρw
Hg T

=⇒ π =
4

R

√
ρc − ρw

ρw
Hg T

=⇒ T =
πR

4

√
ρw

ρc − ρw
· 1

Hg
.

(11)

Interestingly, the time does not depend on h.

Note: The integral above can be calculated as follows. Let u = arcsin
√

1− zc
h . Then

sinu =

√
1− zc

h
=⇒ cosu du = − 1

2h
· 1√

1− zc
h

dzc =⇒ dzc = −2h sinu cosu du. (12)

Additionally, cosu =
√
1− sin2 u =

√
zc
h , so that, plugging the above into the integral, we get∫ h

0

dzc√
zc(h− zc)

= −2

∫ zc=h

zc=0
du

= −2
(
arcsin(1− 1)− arcsin(1− 0)

)
= 2 · π

2

= π.

(13)
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