Physics cup 2024 problem 1

Guy Ginzberg

There are two methods of solving this problem, the first one is done by solving Laplace’s
equation, and the second one is done by making an analogy to the magnetic field around a
superconductor. While | have used the first method for my initial submission, | think it is
important to include the second one as it is less complex mathematically.

Method 1:

First, to describe the motion of water around the disk, | did the following:

Figuring out the motion of the water

Water, as we know, is incompressible. So for each volume element of it, the water that gets
in a dx*dy*dz volume is the same as the water that gets out
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Let’s define a velocity potential, ¢, so
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Therefore:

do  d'o | Lo _
dy2 + dx’ + dz’ =0
In order to find the potential flow around the disk, we will first look at the general case of flow

around an ellipsoid, and make the length of its main axis approach O.
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the flow around an ellipse
We would first start by establishing a 3d elliptical coordinate system, then establish boundary

conditions and solve the laplace equation.
Since a spheroid is the rotation shape of an ellipse, let's make this a 2d elliptic coordinate
system with the third dimension being rotation around the y axis.
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a 2D elliptical coordinate system, blue lines are of constant v (the n axis) and red lines are of constant n(the v
axis). Made with desmos



elliptical coordinate system, from Wikipedia

Elliptical coordinates are defined such as when the axis 7 is at a constant value, x and y
create a ellipses, and when the axis v is at a constant value, x and y create hyperbolae with
the same focal points

X, = k * sinh(n)sin(v)

Y, = k * cosh(n)cos(v)

where K is a constant of scale

SO
S A sin’(v) + cos’(v) = 1
sinhz(n) coshz(n)
and
X y2 2 2
— = sinh (M) — cosh () =1

sin” ) cos® )

Introducing an angle w from the y to z axis, and to define the ellipsoid we would convert X,

from the previous system to the distance from the x axis r = X, = xocos(cp) xAl + xosin(w) zA1
y, = k * cosh(n)sin(v)cos(w)
X, = k * sinh(n)cos(v)

z, = k * cosh(m)sin(v)sin(w)

we simplify according to sin’(v) + cos’(v) = 1, and sinh’(n) — cosh’(n) =— 1
y, = k\/l + (2\/1 - uzcos(co)
x, = klu

z, = k1 + Zz\/l - uzsin(w)
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We now define a length factor for each of our new coordinates, the length factor is defined

as the distance from two points at a curtain place in our coordinate system

in the figure, an ellipsoid defined by = 1, made with desmos 3d
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using these elements, we will define the new velocity potential ¢ as
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Now we can do the same thing we did in part 1, but each area element will be the product of
two length elements,
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we will solve this W|th separatlon of variables
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The solution to this type of equation is a well known one, this is Legendre's differential
equation, and it can be solved with the Legendre functions of the first and second kind

B=(a-P(+b QW)
These unique functions are used everywhere from quantum mechanics to Mie scattering.



We know that when ¢ — oo, the velocity towards the p direction in an almost straight angle (
u — 1) the velocity of the water is u to the x direction, therefore it is u times

2 2
—W+7 o ~/1 — % tothe u direction. we also know because of that when { — oo, the
e
velocity doesn’t jump up to infinity, therefore the velocity potential function is only limited to
the first order, soa = 1
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Let's write our boundary condition for p
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For the function A, the solution is similar, we just need to add the imaginary unit to ¢
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To find ¢ and d, we know that when { — oo, the velocity towards the ¢ direction is u times.
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*** note: the choice of variables is not meant to endorse or make fun of the United Kingdom,
any mention of the letters uk is coincidental only.
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Now let’s find the parameter 9,
We know that the points where ¢ = ZO, form an ellipsoid in our 3D space. To describe the

flow around it we can impose a boundary condition that no water at the surface of the
ellipsoid moves perpendicular to it.
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If we choose now to make (O — 0, our new ellipsoid will now become:
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we got a disk with radius k.

Now let’s push 9, to the limit where ZO -0
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In the lab’s frame of reference, the water far away is stationary and only the water near the
disk moves. To move to that reference frame we need to subtract a uniform flow in the x
direction from our potential function:

q)uniform T xu= uk(u
b = ukp(=(1 — - cot ()

Now, to find the force enacted on the plate to the x direction, we will integrate the pressure
over the surface of the disk, the pressure is defined as

d 1o,2

P =pEE+5Vd)

at the moment of impact with the water, the change in velocity (and thus in potential) is
almost instantaneous, therefore we can neglect any other term in the
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Again, p represents the cosine of the angle between the x axis and the yz plane when { - o
. Since we only care about one side of the disk, the limits of integration for the angle are 0

and % or 0 and 1 for .
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this can be seen as a mass of Madded = %pk3 added to the cylinder in an inelastic collision,

we can write the conservation of momentum equation
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Method 2:

2 2 2

the Laplace equation, or ‘;‘f + ‘242) + ‘;q; = 0 is also present in electromagnetism. In the
y X z

case of electromagnetism, the velocity field is equivalent to the magnetic field around a

polarized object.

We can find the added mass by solving an auxiliary problem of figuring the field around an
infinitely thin circular plate. Our boundary conditions are that no water gets inside the body.
In other words, the field orthogonal to the surface at the surface is zero and no movement of
water happens inside the body.

This is also the behavior of the magnetic field around a superconducting object. In such an
object, the surface currents arrange in such a way that the magnetic field inside is zero,
therefore, if the applied field is uniform, the magnetic field created by the object inside of it
will also be uniform.

We would treat the plate as an infinitely thin ellipsoid. The reason for that is that when the
magnetization of it is uniform, the magnetic field caused by said magnetization is also
uniform.

to prove this, we can use the electri-magnetic analogy,

we start with a homogeneously charged spherical shell, defined by the superposition of
x2+y2+ZZ=Rzandx2+y2+ZZ=(R + dr)2

we pick a point P inside of it, and draw two narrow cones meeting at the point.



let’s find the magnitude of the electric field at the point from both surfaces:

(nh ') (nh, ')

kpdV1 kpdVZ k(SA1 kGA2 kcA1 kcA2 O o 0 e
E = — = — = — = —cos(®) . cos(8) =0
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we can sum these cones over the entire surface of the sphere and get that at every point
E=0

Now, we pick a point P’ inside a homogeneously charged ellipsoidal shell, the shell is
defined by the superposition of% +y +7 =R and % +y +7 = (R + dR)’. we can

X

solve this by applying an affine transformation from the spherical case of x —» -

dx1
dV1 = dxldyldz1 - dzldle

dx
_ 2
dV2 = dedyZdz2 - dzzdy2 -



We also notice that the translation of the two bases of the cone in relation to each other, as
well as the translation of the point P are parallel to the x axis,

moving the two centers to align, and we get two intersecting lines and two parallel lines
creating two triangles, which we know from the Talos principle:
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we now define a new size {, each point has an ellipsoid of % + y2 +7 = ZZ touching it. By
applying gauss's law for each layer of a uniformly charged ellipsoid, we find that the electric

2
field inside of itis E = ¢ * { normal to the surface of the ellipsoid % + y2 +7 = CZ where ¢

is a constant.
Therefore:
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A uniformly polarized ellipsoid in the x direction is a superposition of a uniformly positively
charged ellipsoid at x = 0 and an oppositely charged ellipsoid at x = dx, so for each point
of (xo, Yy zo) inside the ellipsoid:

c((xO—O)—(xO—dx)) crdx

L= 2 == ,Ey =c(y,=-y) =0E =c(z,—2)=0

Therefore a uniformly polarized ellipsoid creates a uniform electric field inside of it.

To apply the electric-magnetic analogy, we need to consider only fields outside the body.

We can prove the magnetic field is homogeneous at an arbitrary point A inside the ellipsoid
by drilling a narrow hole parallel to the magnetization axis next to it, for the points inside the
hole the analogy holds and the magnetic field is uniform.

For the point A outside the hole, we know that the H field parallel to the surface is conserved,
the H field is defined by the magnetic field plus w,M (which is constant), therefore Since the

magnetic field inside the hole is uniform, then H is uniform and the magnetic field at point A
is also uniform. since this can be applied to any point in the ellipsoid, the magnetic field
inside the entire ellipsoid is homogenous

We now need to find the polarization of the ellipsoid, we can do that by comparing the field
produced by the polarized ellipsoid and the field exerted on it. It is known that the bound

surface current is K =M xn= M xn)



imagine a cross section of the ellipsoid with the plane z = 0, from symmetry the same will
apply to any plane parallel to the x axis and going through the center.
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To find the magnetic field, we will calculate the magnetic field at the center of the ellipsoid.
Notice that the induced current on the surface is composed of current loops going around
the center of the ellipsoid.

We now sum the magnetic fields generated by the loops, using the formula for the magnetic
field generated by a ring at a point on its axis. Notice that the field applied from the top part
is the same as the field in the bottom

2 R 2, _dr R 2, _dr R 2 . R urm -dr
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To find the added mass, we need to find the energy of the moving water from the reference
frame of the lab. Moving to the lab’s frame of reference is the same as adding to the object’s
frame a field of constant velocity — v. Which is akin to subtracting the applied magnetic field
and only summing the potential energy from the induced magnetic field.

4B°R’
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We know that U = %mB = which is equivalentto E = %mvz since B is equivalent to v

0
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In a vacuum, the potential energy of a magnetic field per unit of volume is % =2 which is
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equivalent to —~ = —-pv , therefore p is equivalent to S0 the added mass is —— = ——p
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Since only half of the object is immersed in water:
_ 4R
M iddgea = "3 P

Just like in method 1, this can be seen as a mass of M %pR3 added to the cylinder in

added =
an inelastic collision, we can write the conservation of momentum equation
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Taking measurements

| used a pixel ruler and vic media player to measure the distance of the cylinder from the top
of the screen, | took 5 measurements each frame and plotted the average in Desmos.

The disk hits the water in measurement 20 so we need to make two trend lines for before
and after the impact.
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580.8
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GB0.4
322
T15.8
T35
7538
73
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866.2
886.2
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0238
04z
951.2
a70.4
oera
1015.8
1033.2
1049.4
1067.8
1077.2
1086.2
1085.2
1104
1113.4
122.2
1120.4
1138
1145.2
1152.4
1160.4
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Since we only care about the first few frames after the disk hits the water (after a while

instabilities develop and the system becomes hard to analyze), it is okay that the second line
only matches the first few points
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time [frames]

u = 18.5 + 0.4[px/frame]

| measured:
k = 331[px] (radius of the disk)
H = 265[px] (height of the disk)

p = 1000[kg/m’]

and finally:

Peytinder = 3~1A::E?1>g%0—).13§51).-1(82.25) =73 101[kg/m3]
Peytinder = 75 10 + 5 - 10 [kg/m’]

This result is surprising since we don't see the disk float back up at the end of the video, but
considering the fact we see very little change in the velocity when the disk is underwater, it is
possible that eventually it rose back to the top (even the sudden change at n=43 is duo to
the bottom of the disk hitting the edge of the screen forcing me to measure the height from
the top, and most likely optic effects caused the top part to appear slower, or perhaps it was
an actual rotation around the x axis)



