
Physics cup 2024 problem 1
Guy Ginzberg

There are two methods of solving this problem, the first one is done by solving Laplace’s
equation, and the second one is done by making an analogy to the magnetic field around a
superconductor. While I have used the first method for my initial submission, I think it is
important to include the second one as it is less complex mathematically.

Method 1:
First, to describe the motion of water around the disk, I did the following:

Figuring out the motion of the water

Water, as we know, is incompressible. So for each volume element of it, the water that gets
in a dx*dy*dz volume is the same as the water that gets out
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In order to find the potential flow around the disk, we will first look at the general case of flow
around an ellipsoid, and make the length of its main axis approach 0.



the flow around an ellipse
We would first start by establishing a 3d elliptical coordinate system, then establish boundary
conditions and solve the laplace equation.
Since a spheroid is the rotation shape of an ellipse, let’s make this a 2d elliptic coordinate
system with the third dimension being rotation around the y axis.

a 2D elliptical coordinate system, blue lines are of constant (the axis) and red lines are of constant (theν η η ν
axis). Made with desmos



elliptical coordinate system, from Wikipedia

Elliptical coordinates are defined such as when the axis is at a constant value, x and yη
create a ellipses, and when the axis is at a constant value, x and y create hyperbolae withν
the same focal points
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we simplify according to , and𝑠𝑖𝑛2(ν) + 𝑐𝑜𝑠2(ν) = 1 𝑠𝑖𝑛ℎ2(µ) − 𝑐𝑜𝑠ℎ2(µ) =− 1

𝑦
1

= 𝑘 1 + ζ2 1 − µ2𝑐𝑜𝑠(ω)

𝑥
1

= 𝑘ζµ

𝑧
1

= 𝑘 1 + ζ2 1 − µ2𝑠𝑖𝑛(ω)



in the figure, an ellipsoid defined by , made with desmos 3d𝑥2
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We now define a length factor for each of our new coordinates, the length factor is defined
as the distance from two points at a curtain place in our coordinate system
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Now we can do the same thing we did in part 1, but each area element will be the product of
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we will solve this with separation of variables
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The solution to this type of equation is a well known one, this is Legendre's differential
equation, and it can be solved with the Legendre functions of the first and second kind
𝐵 = (𝑎 · 𝑃

α
(µ) + 𝑏 · 𝑄

α
(µ))

These unique functions are used everywhere from quantum mechanics to Mie scattering.



We know that when , the velocity towards the μ direction in an almost straight angle (ζ → ∞
the velocity of the water is u to the x direction, therefore it is u timesµ → 1)

, to the direction. we also know because of that when , the𝑦2+𝑧2

𝑥2+𝑦2+𝑧2
  ≈

ζ→∞
1 − µ2 µ ζ → ∞

velocity doesn’t jump up to infinity, therefore the velocity potential function is only limited to
the first order, so α = 1

𝑎
𝑛+2

=
𝑎

𝑛
(𝑛(𝑛+1)−2)

(𝑛+2)(𝑛+1) =
𝑎

𝑛
(𝑛+2)(𝑛−1)

(𝑛+2)(𝑛+1) =
𝑎

𝑛
(𝑛−1)

(𝑛+1)

𝑃
1
(𝑥) = 𝑎

0
𝑥

𝑎
−𝑛−2

=
𝑎

𝑛
(−𝑛−1)

(−𝑛−3) =
𝑎

𝑛+2
(−𝑛+1)

(−𝑛−3) =  .  .  . =
𝑎

0
(0+1)

(−𝑛−3)    𝑜𝑟 
𝑎

1
(−1+1)

(−𝑛−3)

for n<0

𝑎
−2𝑛

=
𝑎

0

(−2𝑛−1)  

𝑎
−2𝑛−1

= 0 

for n=0:

𝑎
𝑛=0

=
𝑎

0

(0−1) =− 𝑎
𝑛=0

 

𝑎
𝑛=0

= 0 

𝑎
−𝑛−2

=
𝑎

−𝑛
(−𝑛−1)

(−𝑛−3) =
𝑎

−𝑛+2
(−𝑛+1)

(−𝑛−3) =  .  .  . =
−𝑎

−2

(−𝑛−3)    𝑜𝑟 
𝑎

−1
(−1+1)

(−𝑛−3)

𝑄
1
(𝑥) =−

𝑛=1

∞

∑
𝑎

−2

𝑥2𝑛(2𝑛+1)

Let’s write our boundary condition for µ

𝑑ϕ
𝑑𝑠

µ µ→1,ζ→∞
=

𝑑ϕ
𝑑𝑠

µ µ=1,ζ→∞

𝑘 ζ2+µ2

1−µ2

= 𝑢𝑠𝑖𝑛(ν) = 𝑢 1 − µ2

(𝑎 + 𝑏
𝑛=1

∞

∑ −2𝑛*µ−2𝑛−1

(2𝑛+1) ) 1 − µ2 = 𝑐𝑜𝑛𝑠𝑡 * 1 − µ2

(𝑎 − ∞𝑏) = 𝑐𝑜𝑛𝑠𝑡
𝑏 = 0
𝐵 = 𝑎µ
For the function A, the solution is similar, we just need to add the imaginary unit to ζ
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*** note: the choice of variables is not meant to endorse or make fun of the United Kingdom,
any mention of the letters is coincidental only.𝑢𝑘
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If we choose now to make , our new ellipsoid will now become:ζ
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Now let’s push to the limit where𝑔
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In the lab’s frame of reference, the water far away is stationary and only the water near the
disk moves. To move to that reference frame we need to subtract a uniform flow in the x
direction from our potential function:
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Now, to find the force enacted on the plate to the x direction, we will integrate the pressure
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at the moment of impact with the water, the change in velocity (and thus in potential) is
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Again, represents the cosine of the angle between the x axis and the yz plane whenµ ζ → ∞
. Since we only care about one side of the disk, the limits of integration for the angle are 0
and , or 0 and 1 for .π

2 µ

− 4 · ρ�̇�𝑘3[
0
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− ρ 4
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this can be seen as a mass of added to the cylinder in an inelastic collision,𝑀
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𝑏𝑒𝑓𝑜𝑟𝑒
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ρ
𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟

=
4ρ𝑘𝑢

𝑎𝑓𝑡𝑒𝑟

3π(𝑢
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Method 2:
the Laplace equation, or is also present in electromagnetism. In the𝑑2ϕ

𝑑𝑦2 + 𝑑2ϕ

𝑑𝑥2 + 𝑑2ϕ

𝑑𝑧2 = 0

case of electromagnetism, the velocity field is equivalent to the magnetic field around a
polarized object.

We can find the added mass by solving an auxiliary problem of figuring the field around an
infinitely thin circular plate. Our boundary conditions are that no water gets inside the body.
In other words, the field orthogonal to the surface at the surface is zero and no movement of
water happens inside the body.
This is also the behavior of the magnetic field around a superconducting object. In such an
object, the surface currents arrange in such a way that the magnetic field inside is zero,
therefore, if the applied field is uniform, the magnetic field created by the object inside of it
will also be uniform.
We would treat the plate as an infinitely thin ellipsoid. The reason for that is that when the
magnetization of it is uniform, the magnetic field caused by said magnetization is also
uniform.
to prove this, we can use the electri-magnetic analogy,
we start with a homogeneously charged spherical shell, defined by the superposition of

and𝑥2 + 𝑦2 + 𝑧2 = 𝑅2 𝑥2 + 𝑦2 + 𝑧2 = (𝑅 + 𝑑𝑟)2

we pick a point P inside of it, and draw two narrow cones meeting at the point.



let’s find the magnitude of the electric field at the point from both surfaces:

𝐸 =
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we can sum these cones over the entire surface of the sphere and get that at every point
𝐸 = 0

Now, we pick a point P’ inside a homogeneously charged ellipsoidal shell, the shell is

defined by the superposition of and . we can𝑥2

𝑏2 + 𝑦2 + 𝑧2 = 𝑅2 𝑥2

𝑏2 + 𝑦2 + 𝑧2 = (𝑅 + 𝑑𝑅)2

solve this by applying an affine transformation from the spherical case of 𝑥 → 𝑥
𝑏

𝑑𝑉
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1
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2

𝑏



We also notice that the translation of the two bases of the cone in relation to each other, as
well as the translation of the point P are parallel to the x axis,
moving the two centers to align, and we get two intersecting lines and two parallel lines
creating two triangles, which we know from the Talos principle:
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therefore:
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we now define a new size , each point has an ellipsoid of touching it. Byζ 𝑥2

𝑏2 + 𝑦2 + 𝑧2 = ζ2

applying gauss's law for each layer of a uniformly charged ellipsoid, we find that the electric

field inside of it is normal to the surface of the ellipsoid where𝐸 = 𝑐 * ζ 𝑥2

𝑏2 + 𝑦2 + 𝑧2 = ζ2 𝑐

is a constant.
Therefore:

𝐸
𝑥

= 𝑐 * ζ 𝑑ζ
𝑑𝑥 = 𝑐 * 𝑥2
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𝑏2 +𝑦2+𝑧2
= 𝑐𝑧

A uniformly polarized ellipsoid in the x direction is a superposition of a uniformly positively
charged ellipsoid at and an oppositely charged ellipsoid at , so for each point𝑥 = 0 𝑥 = 𝑑𝑥
of inside the ellipsoid:(𝑥

0
, 𝑦

0
, 𝑧

0
)

, ,𝐸
𝑥

=
𝑐((𝑥

0
−0)−(𝑥

0
−𝑑𝑥))

𝑏2 = 𝑐*𝑑𝑥

𝑏2 𝐸
𝑦
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0

− 𝑦
0
) = 0 𝐸

𝑧
= 𝑐(𝑧

0
− 𝑧

0
) = 0

Therefore a uniformly polarized ellipsoid creates a uniform electric field inside of it.
To apply the electric-magnetic analogy, we need to consider only fields outside the body.
We can prove the magnetic field is homogeneous at an arbitrary point inside the ellipsoid𝐴
by drilling a narrow hole parallel to the magnetization axis next to it, for the points inside the
hole the analogy holds and the magnetic field is uniform.
For the point outside the hole, we know that the H field parallel to the surface is conserved,𝐴
the H field is defined by the magnetic field plus (which is constant), therefore Since theµ

0
𝑀

magnetic field inside the hole is uniform, then H is uniform and the magnetic field at point 𝐴
is also uniform. since this can be applied to any point in the ellipsoid, the magnetic field
inside the entire ellipsoid is homogenous

We now need to find the polarization of the ellipsoid, we can do that by comparing the field
produced by the polarized ellipsoid and the field exerted on it. It is known that the bound

surface current is 𝐾
𝑚

= 𝑀 × 𝑛
^

= 𝑀(𝑥
^

× 𝑛
^
)



imagine a cross section of the ellipsoid with the plane , from symmetry the same will𝑧 = 0
apply to any plane parallel to the x axis and going through the center.

𝑥2

𝑏2 + 𝑦2 = 𝑅2

𝑥 =± 𝑏 𝑅2 − 𝑦2

the angle between the tangent of the ellipse and the y axis is φ
𝑡𝑎𝑛(φ) = 𝑑𝑥

𝑑𝑦 = ∓𝑏𝑦

𝑅2−𝑦2
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1+𝑡𝑎𝑛2(φ)
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due to rotational symmetry, the vector at the points that lay on the perimeter of the ellipse𝑛
→

has no component. Therefore:𝑧
^

|(𝑥
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× 𝑛
^
)| = 𝑠𝑖𝑛(φ) = ∓𝑏𝑦
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𝐾
𝑚

= ∓𝑏𝑦𝑀

𝑏2𝑦2+𝑅2−𝑦2
𝑧

Generalized to any plane parallel to the x axis and going through the center:

𝑥 =± 𝑏 𝑅2 − 𝑟2, 𝑟
→

= 𝑦
→

+ 𝑧
→

𝑡𝑎𝑛(φ) = ∓𝑏𝑟
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To find the magnetic field, we will calculate the magnetic field at the center of the ellipsoid.
Notice that the induced current on the surface is composed of current loops going around
the center of the ellipsoid.
We now sum the magnetic fields generated by the loops, using the formula for the magnetic
field generated by a ring at a point on its axis. Notice that the field applied from the top part
is the same as the field in the bottom
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in the case of a flat disc 𝑏 → 0
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To find the added mass, we need to find the energy of the moving water from the reference
frame of the lab. Moving to the lab’s frame of reference is the same as adding to the object’s
frame a field of constant velocity . Which is akin to subtracting the applied magnetic field− 𝑣
and only summing the potential energy from the induced magnetic field.

We know that which is equivalent to since is equivalent to𝑈 = 1
2 𝑚𝐵 = 4𝐵2𝑅3

3µ
0

𝐸 = 1
2 𝑚𝑣2 𝐵 𝑣

, than is equivalent to .2𝐸
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3µ
0
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In a vacuum, the potential energy of a magnetic field per unit of volume is which is𝑑𝑈
𝑑𝑉 = 𝐵2
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Since only half of the object is immersed in water:

𝑚
𝑎𝑑𝑑𝑒𝑑

= 4𝑅3

3 ρ

Just like in method 1, this can be seen as a mass of added to the cylinder in𝑀
𝑎𝑑𝑑𝑒𝑑

= 4
3 ρ𝑅3

an inelastic collision, we can write the conservation of momentum equation
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Taking measurements
I used a pixel ruler and vlc media player to measure the distance of the cylinder from the top
of the screen, I took 5 measurements each frame and plotted the average in Desmos.
The disk hits the water in measurement 20 so we need to make two trend lines for before
and after the impact.





Since we only care about the first few frames after the disk hits the water (after a while
instabilities develop and the system becomes hard to analyze), it is okay that the second line
only matches the first few points



𝑢
𝑏𝑒𝑓𝑜𝑟𝑒

= 32. 0 ± 0. 5[𝑝𝑥/𝑓𝑟𝑎𝑚𝑒]



𝑢
𝑎𝑓𝑡𝑒𝑟

= 18. 5 ± 0. 4[𝑝𝑥/𝑓𝑟𝑎𝑚𝑒]

I measured:
𝑘 = 331[𝑝𝑥] (𝑟𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑖𝑠𝑘)
𝐻 = 265[𝑝𝑥]  (ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑖𝑠𝑘)

ρ
𝑤𝑎𝑡𝑒𝑟

= 1000[𝑘𝑔/𝑚3]

and finally:

ρ
𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟

= 4·(1000)·331·18.5
3·π·(32.0−18.5)·(265) = 73 · 101[𝑘𝑔/𝑚3]

ρ
𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟

= 73 · 101 ± 5 · 101[𝑘𝑔/𝑚3]

This result is surprising since we don't see the disk float back up at the end of the video, but
considering the fact we see very little change in the velocity when the disk is underwater, it is
possible that eventually it rose back to the top (even the sudden change at n=43 is duo to
the bottom of the disk hitting the edge of the screen forcing me to measure the height from
the top, and most likely optic effects caused the top part to appear slower, or perhaps it was
an actual rotation around the x axis)


