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1 Introduction

The solution is organized as follows: I first describe the motion qualitatively, then I analyse the initial impact of
the cylinder with the water, and from it I relate the velocities of the cylinder directly before and after impact in
dependence on the cylinders density. Afterwards I use the video to make measurements using pixel and frame
counting, and these measurements, together with the theoretical analysis, reveal the density of the cylinder.

2 Qualitative motion

The cylinder can first be seen falling under the influence of gravity through air before impacting the water (phase
0, t < 0). In the moment t = 0 the cylinder first impacts the water and a wave appears in the water travelling
at the speed of sound in water c giving the water some momentum. The pressure gradient is high in this phase
and therefore in this short amount of time τ the cylinder loses a finite amount of momentum (phase 1). As the
acceleration of the water drops so does the pressure gradient (phase 2) and although the water is still slowing the
cylinder down, the deceleration is much smaller and the motion of the water itself is rather chaotic. In phase 3 the
cylinder is completely submerged and sinks due to its density while on the surface the water performs complex
motion. I will not be analysing phase 3, the focus of this solution is on phase 1.

3 Opening remarks

Notation:

• we are working in cylindrical coordinates (r, ϕ, z), with the z axis along the cylinders axis and directed
downwards

• ρ0, ρ are the densities of water and the cylinder respectively

• R, h are the radius and height of the cylinder respectively

• u(r, t) is the fluid velocity vector field (r is the position vector)

• y(t) is the z component of the bottom of the cylinder with respect to the surface of the water

• a ∼ b means that a is of the order of magnitude b

• η, σ are the viscosity and surface tension of water respectively

The following facts will be used in this solution:

• From axial symmetry: ϕ̂ · u = 0

• Water is incompressible (hence ∇ · u = 0)

• Euler’s equation (Newton’s second law for a fluid parcel)

• The dimensions of the water container are much bigger than R

• The viscosity and surface tension of water are negligible in phase 1

• the obvious ρ > ρ0

• R
c << τ << R

v0
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4 Phase 0 (t < 0)

The motion in this phase can be trivially described with u(r, t) = 0 for t < 0 and y(t) = v0t+ 1
2gt

2.

5 Phase 1 (0 < t < τ)

This is the main part of the solution. Upon impact a fast wave travels through the water at the speed of sound
c, giving it momentum. Since c is huge in comparison to any other characteristic speed (water has a high bulk
modulus) we conclude c >> R/τ >> v0.
Claim: In this short time period 0 < t < τ the forces of friction, surface tension and gravity: Fv, Fs, Fg have a
negligible effect in comparison with the pressure.
Proof: The impulse of the pressure force is equal to the momentum given to the water in phase 1. This impulse
is of the order of I ∼ ρ0R3v0. We also know Fg ∼ ρR3g, Fv ∼ ηRv0, Fs ∼ σR which are all << ρ0R

3v0/τ ∼ Fp
(where Fp is the pressure force on the cylinder) since τ is very small.
The motion of a parcel of water can be described by Euler’s equation (pressure gradient is the dominant force as
we have established):

ρ0
du
dt

= −∇p (1)

Here du
dt is the material derivative of u and can be computed as:

du
dt

=
∂u
∂t

+ (u · ∇)u

Note that the velocity in this period is not big (it’s of the order of v0), but the acceleration is huge in comparison.
Therefore we can approximate:

du
dt

=
∂u
∂t

We can now integrate equation (1) in time to obtain:

u(r, τ) = ∇
[
− 1

ρ0

∫ τ

0

p(r, t)dt
]

We define:
φ(r) = − 1

ρ0

∫ τ

0

p(r, t)dt

Newton’s second law in the z direction to the system cylinder-water:

dP

dt
= ẑ · Fext(t)

Where P = Pc + Pw is the total momentum in the z direction. Integrating this from 0 to τ and neglecting the
external forces in this short time period we get P (0) = P (τ), conservation of momentum in the z direction before
and after the impact. From this:

R2hπρ(v0 − v1) = Pw = ∆mv1 = ρ0

∫
fluid

u · ẑ d3x (2)

Here ∆m is the so called added mass of the fluid. Our goal now is to find this added mass exactly. Let
u′(r) = u(r, τ)− v1ẑ (this is the velocity of fluid at r as seen by the cylinder). Consider the following boundary
conditions:

1. Since the cylinder is a solid body whose velocity from its own reference frame is 0, we have
u′(r < R, z = 0) · ẑ = 0.

2. Since p(r, z = 0, t) = 0 for r > R, 0 < t < τ (this part of the fluid is in contact with the atmosphere) we
have φ(r, z = 0) = 0 for r > R. This implies u · r̂ = 0 and also u′ · r̂ = 0 for r > R, z = 0.

3. For |r| → ∞ we have u′ → −v1ẑ.

3



Since ∇ · u = 0 and u = ∇φ we have also ∇ · u′ = 0, u′ = −∇φ′ where φ′ = −φ + v1z. From this we can also
easily see ∇× u′ = 0. Now we will consider a completely different problem in electrostatics which will turn out
to be analogous to this problem. Consider a dielectric ellipsoid defined by:

r2

R2
+
z2

c2
≤ 1

Take the dielectric constant of this ellipsoid to be ε = 0. Put this ellipsoid into a uniform electric field E0 = −E0ẑ
in vacuum. The ellipsoid develops some polarisation P and produces it’s own field creating the total field E.
Consider the limit c → 0. From planar symmetry about the plane z = 0 we get E · r̂ = 0 for r > R, z = 0. For
|r| → ∞ we have E→ −E0ẑ. On the boundary between dielectrics εE · n̂ is continuous (see Appendix) where n̂
is the unit vector normal to the surface of separation between the dielectrics. Since we let c → 0 we have n̂ = ẑ
and since ε = 0 inside the ellipsoid we have E · ẑ = 0 for r < R, z = 0. From Maxwell’s equations we also have
∇ ·E = 0 and ∇×E = 0 outside the ellipsoid. These boundary conditions are the same as conditions 1, 2 and 3
with v1 ↔ E0. We conclude that for z ≥ 0 we have u′ = v1

E0
E. This a corollary of the uniqueness theorem (see

Appendix). The reason for introducing this analogy is that it is easier to solve such problems using the already
existing machinery of electrostatics.
There is a well known fact about ellipsoids in uniform fields (which is even more apparent for thin oblate spheroids)
and that is that they get polarized with uniform polarisation P which produces its own field E′ to make the total
field E = E0 + E′ (at every point). Since P is uniform inside the ellipsoid then E′ is uniform as well, let its
magnitude inside the ellipsoid be E′. To compute the added mass we turn to equation (2):

∆mv1 = ρ0

∫
fluid

u · ẑ d3x = ρ0 lim
c→0

∫
Sc

(u′ + v1ẑ) · ẑ d3x

Here Sc = {(r, ϕ, z) : r2

R2 + z2

c2 > 1, r ≥ 0, z > 0}. We can now invoke our analogy (divide by v1) and symmetry:

∆m = ρ0
1

E0
lim
c→0

∫
Sc

(E−E0) · ẑ d3x = ρ0
1

2E0
lim
c→0

∫
R3−ellipsoid

E′ · ẑ d3x =

= ρ0
1

2E0
lim
c→0

[∫
R3

E′ · ẑ d3x−
∫
ellipsoid

E′ · ẑ d3x
]

= ρ0
1

2E0
lim
c→0

[
−ẑ ·

∫
∂R3

V ′da +
4

3
πR2cE′

]

=⇒ ∆m = lim
c→0

2

3
πR2cρ0

E′

E0
(3)

Here we have used that the volume of the ellipsoid is 4
3πR

2c and that the field inside it is uniform, as well as that
E′ = −∇V ′. Thus to compute the added mass we need only to calculate the electric field inside the ellipsoid. On
the surface S of the ellipsoid there is a bound surface charge σb = n̂·P where P = −(ε−ε0)(E′+E0)ẑ = ε0(E′+E0)ẑ
is the polarisation (since ε = 0). Let us parameterize S as r = R sin θ, z = c cos θ for θ ∈ [0, π〉. Let x << c2/R2

be some small real number. Now we consider the straight line path (0, 0)→ (0, xc). Obviously we know:

E′xc = −
∫ (0,xc)

(0,0)

E′ · dl = V ′(0, xc)− V ′(0, 0)

We will pick the zero of the potential V ′ at infinity. Note that since r̂ ·E′ = 0 for z = 0 we have that V ′(0, 0) = 0.
Also we can find V ′(0, xc) by evaluating the Coulomb integral of σb:

V ′(r) =
1

4πε0

∮
S

σb(r′)
|r− r′|

da′ (4)

We will now evaluate the integral (4) for the point r = (0, xc). Let α = c
R . Then the vector dl′ along the surface

of the ellipsoid is:
dl′ = dr′r̂ + dz′r̂ = R(cos θr̂− α sin θẑ)dθ

Then we have:
da′ = 2πr′dl′ = 2πR2 sin θ

√
cos2 θ + α2 sin2 θdθ

Note that n̂ is just the unit vector perpendicular to dl′:

n̂ =
α sin θr̂ + cos θẑ√
cos2 θ + α2 sin2 θ

4



And thus:
σb(θ) = P · n̂ = ε0(E′ + E0)

cos θ√
cos2 θ + α2 sin2 θ

Also |r− r′| = R
√

sin2 θ + α2(cos θ − x)2. Substituting into (4) and using x << α2 and a substitution u = cot θ:

V ′(0, xc) =
1

4πε0

∫ π

0

1

R
√

sin2 θ + α2(cos θ − x)2
ε0(E′ + E0)

cos θ√
cos2 θ + α2 sin2 θ

2πR2 sin θ
√

cos2 θ + α2 sin2 θdθ

=
1

2
(E′ + E0)R

∫ π

0

sin θ cos θ√
sin2 θ + α2 cos2 θ − 2α2 cos θx

dθ =
1

2
(E′ + E0)R

∫ π

0

cos θ√
1 + α2 cot2 θ

[
1 +

xα2 cos θ

sin2 θ + α2 cos2 θ

]
dθ

=
1

2
(E′ + E0)xα2

∫ π

0

cos2 θ

sin2 θ(1 + α2 cot2 θ)3/2
dθ = (E′ + E0)Rxα2

∫ ∞
0

u2 du
(1 + u2)(1 + α2u2)3/2

Now to evaluate the last integral we will use the Leibniz rule. Let us define:

I(b) =

∫ ∞
0

(u2 + b) du
(1 + u2)(1 + α2u2)3/2

, b ∈ R

Note that:

I(1) =

∫ ∞
0

du
(1 + α2u2)3/2

=
1

α

∫ π/2

0

cos θdθ =
1

α
, (Here: αu = tan θ)

Also we can use α << 1 and differentiation under the integral sign:

I ′(b) =

∫ ∞
0

du
(1 + u2)(1 + α2u2)3/2

=

∫ ∞
0

du
1 + u2

=
π

2

Integrating this:

I(b) = I(1) +
π

2
(b− 1) =⇒ I(0) =

∫ ∞
0

u2 du
(1 + u2)(1 + α2u2)3/2

=
1

α
− π

2

Now we can put all this together:

xcE′ = V ′(0, xc) = (E′ + E0)Rxα2

(
1

α
− π

2

)
Note that we have α << 1 and thus:

E′ =
2

π

1

α
E0

Substituting into (3) we get:

∆m =
4

3
ρ0R

3 (5)

6 Phases 2 and 3 (t > 0)

The phases 2 and 3 are chaotic. The cylinder still has some added mass, although it would be very difficult to
find. In the beginning of phase 2, y(t) can be approximated as y(t) = v1t for small times t > 0.
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7 Measurements

From equations (2) and (5) one can solve for ρ:

ρ =
4

3π

v1
v0 − v1

R

h
ρ0

Since we know ρ0 = 1 g cm−3, to find ρ we need only measure the ratios v1
v0−v1 ,

R
h . This is done by pixel and

frame counting in the video. We can use a pixel ruler to measure R and h in pixels and also y(t) in various frames
just before and after the impact. By finding best fit lines for y(t) before and after the impact we can determine
v0, v1 in units of pixels/frame. For more precise measurements, rather than measuring y it is more convenient to
measure Y , the distance from the top side of the cylinder from the top of the video frame. The data is presented
in Table 1.

t/frames Y /pixels
-7 58
-6 73
-5 89
-4 108
-3 122
-2 141
-1 157
0 175
1 188
2 200
3 212

Table 1: Y (t) directly before and after the impact

From this data v0 = 16.7 pixels/frame and v1 = 12 pixels/frame are computed (using Microsoft Excel). Also
R = 180 pixels and h = 140 pixels. These values can then be substituted in the boxed formula to give:

ρ = 1.39 g cm−3

Note that these measurements are not very precise and thus the real density may be a bit different.

8 Appendix: the uniqueness theorem

Theorem: If a potential φ in a given volume V satisfies the Laplace equation and is also specified on the
boundary ∂V then φ can be uniquely determined.
Proof: Suppose there exist two such potentials φ1, φ2, we have ∇2φ1 = ∇2φ2 = 0 for r in V and also φ1 = φ2
for r in ∂V . Let φ3 = φ1 − φ2. We have φ3 = 0 for r in ∂V and ∇2φ3 = 0, from which we know that all the
extreme values of φ3 are achieved on the boundary but that means 0 ≤ φ3(r) ≤ 0 for all r in V so φ3 = 0 and
φ1 = φ2 �.
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