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1 Some assumptions and observations

Before we start solving this problem, we need to simplify it as much
as possible due to hydrodynamics being extremely complicated. We
shall take the water as an incompressible fluid. We shall ignore the
effects of the air above the water on the cylinder. We shall consider
the cylinder to be a rigid body.

Since many of the more complex mechanisms of fluids begin happe-
ning only after some time passes, we can consider the moments right
before and right after the collision of the cylinder with the water.
Due to the small time interval we may consider it as a plastic colli-
sion between 2 objects. To do so, we need to use a term known as
added mass which provides an easy way to see how a body acts inside
a liquid, pretending it just has a higher mass due to it needing to
add momentum to the liquid surrounding it as well as to itself. Since
we are only considering the moment right after the collision, we can,
instead of considering the whole cylinder, just consider the part im-
mersed in the water. Here that is a very thin disc, which we shall
approximate to be infinitely thin. Added mass is defined as follows:∫ ρv2

rel

2 dV =
maddv

2
cm

2

Where ρ is the density of the liquid, here the liquid being water, vrel
the velocity of the water relative to the body and vcm the velocity of
the center of mass of the body. Here we have no rotation and the
body is rigid so it is the speed of the body itself. The volume integral
is over the whole volume of water. Due to this generally being used
when bodies are fully immersed, the integral is over the whole of
space.

Regarding measurements, we can only measure relative changes, so
we shall aim to find a solution which can be expressed in only me-
asurable ratios and well known constants.
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2 Calculating the added mass

To calculate the added mass of the thin disc in the water, we shall
use an analogy with electromagnetic fields. We can consider the disc
as the limit of an ellipsoid of sides, R, R and d as the ratio d

R tends to
0. The reason for considering an ellipsoid is due to ellipsoids having
constant magnetic fields when their magnetization is constant. To go
through with the analogy we take the ellipsoid to be superconductive,
that is µr = 0, that is in it the net magnetic field is 0, similar to, how
in the case of our cylinder, no water flows through it. We may draw a
parallel between magnetic and velocity fields because their governing
equations in this case are the same. We consider water to be basically
incompressible, that is ∇· v⃗ = 0. According to Gauss’ law ∇· B⃗ = 0 as
well. Since the water is in a resting state at the beginning moment,
and since there is no torque acting on the water/body, we can easily
infer that ∇× v⃗ = 0 in the moments we are considering the system.
Similarly to that, since we shall be considering a magnetostatic sys-
tem, ∇ × B⃗ = 0 as well since there will be no currents outside the
body and we are comparing the flow of water with the magnetic field
outside the ellipsoid. Aside from that, the boundary equations are
also the same. Due to our ellipsoid being superconductive we can see
that inside of it, B is equal to 0, just like how the water’s velocity
is 0 inside of the cyllinder. Furthermore, the magnetic field on the
boundary is fully tangential, just like the no slip condition necessita-
tes in hydrodynamics. Because of this we can see that the governing
equations are the same. To convert between the 2 we need to set an
arbitrary measure with which we can make an analogy. Here we have
chosen to equate the energies of the kinetic energy of water and the
magnetic field in the air in our analogous system.∫

ω
B⃗2

2µ0
dV =

∫
ω

ρv⃗2

2 dV

B⃗2

µ0
= ρv⃗2

v⃗ = B⃗√
ρµ0

First let’s define the coordinate system in which we shall work with
the ellipsoid. We shall use a cylindrical coordinate system (r, θ, z),
where the point (0, 0, 0) is in the center of the ellipsoid and the z axis
aligns with the short axis of the ellipsoid. Or in the other words the

ellipsoid’s equation is r2

R2 + z2

d2 = 1

In the same way we can consider the motion of a rigid body of constant
velocity in a liquid as the body resting and the liquid moving towards
it with the same velocity, we shall put our ellipsoid into a magnetic
field of strength B⃗0 = B0ẑ. Since we want our magnetization to reduce
the field to 0 inside of the ellipsoid, it’s clear that M⃗ = −Mẑ. To get
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the current distribution in the ellipsoid due to magnetization, we can
use the following 2 formulas to obtain the volume, that is surface
current distributions:

J⃗b =
dI⃗
dA = ∇× M⃗ = 0

K⃗b =
dI⃗
dl = M⃗ × n̂

The first equation is trivially seen to be 0. The n̂ in the 2nd equation
is the normalized normal vector to the surface of a body. To find
it for our body we can first see that due to its radial symmetry it
is enough to consider just the z-r plane. Considering the upper half

first, we can take that z =
√
d2 − d2r2

R2 , thus the tangential vector can

be written as t̂ = cosαr̂ + sinαẑ, where tgα = dz
dr . Since the normal

vector is perpendicular to it, while still being in the same plane, it is
either of the form n̂ = sinαr̂− cosαẑ or n̂ = −sinαr̂+ cosαẑ. Due to the
geometry of the problem we can see that we want r̂ to be positive
both times. Through trigonometry and that condition we can find
that sinα = tgα√

1+tg2α
. From this we obtain:

tgα = − d2r√
d2R4−d2r2R2

sinα = − d2r√
d2R4+d4r2−d2r2R2

= − d2r√
d2R4−d2r2R2

We shall use the 2nd formula for n̂, cos is obviously positive. Here we
ignored the quartic d term due to d

R << 1.

M⃗ × n̂ =

∣∣∣∣∣∣
r̂ θ̂ ẑ
0 0 −M

sinα 0 cosα

∣∣∣∣∣∣ = −Msinαθ̂ = dI⃗
dl

Since sinα would have to be positive even if d were negative, we
can see that this relation holds true even for the bottom half of the
ellipsoid. We can easily see that this solution corresponds to circular
loops around the ellipsoid. With that we can easily calculate the
magnetic field in the center of the ellipsoid due to currents, which
should be equal to B0 but in the opposite direction. Due to d being
small, in the limit we are considering we shall consider the center
of the ellipse to be approximately in the same plane as the circular
loops. Then the 2 distinct loops at the edges converge into 1 as well.
We will be going from the center to the edge radially, so dl turns to
dr.

dB = µ0dI
r dB = µ0Msinαdr

r = µ0Md2dr√
d2R4−d2r2R2

B0 = µ0Md
∫ R

0
1√

R4−r2R2
dr = µ0Md π

2R
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Of course, this magnetic field is in the −ẑ direction to counteract the
original B0.

To find the added mass of the disc, we continue the analogy and see
that the magnetic field from the ellipsoid’s currents, Bs, corresponds
to the relative velocity of water to the disc. Since we decided that
energy is equal in our analogy, we can write this down as the following:∫

ρv2reldV =
∫ B2

s

µ0
dV = maddv

2
cm

vcm is the velocity of the center of mass of the disc/cylinder in a
frame where the water is initially at rest, it corresponds to B0. One
way to obtain the solution to this integral is by seeing the work done
by putting the ellipsoid in the magnetic field B0. Since the ellipsoid
has constant magnetization we can imagine it as a lot of dipoles m =

M 4πR2d
3 . Before it was put into the field, they had random orientation,

while after they are all oriented in the −ẑ direction. In other words,
work had to be put in to turn them around. The magnetic field inside
the ellipsoid, as shown earlier, is proportional to M , that is to say to
m. The energy at the start inside the ellipsoid is 0.

U = −m⃗ · B⃗
W =

∫ B0

0
mdB = mB0

2

∆Ep = W =
∫ (B⃗s+B⃗0)

2

2µ0
dV −

∫ B2
0

2µ0
dV =∫ B2

0

2µ0
dV +

∫
B⃗0·B⃗s

µ0
dV +

∫ B2
s

2µ0
dV −

∫ B2
0

2µ0
dV

W = B0

∫
ẑ·B⃗s

µ0
dV +

∫ B2
s

2µ0
dV

The solution to the first integral may be easily obtained since the
magnetic field lines of Bs are all closed, with the exception of the
1 going through the middle of the ellipsoid, but that one occupies
an infinitesimally small amount of space so it does not influence the
result. Since the lines are closed, every time you have some value of
Bẑ in the magnetic field line, you also have a value of −Bẑ due to
it needing to be a closed loop. Thus the result of that integral is 0.
Using this and our previous equations we can obtain the result for
the added mass:

maddv
2
cm = 2W = mB0 = MB0

4πR2d
3 = B2

0
4πR2d

3
2R

πdµ0

Using our analogy where: B0 = vcm
√
ρµ0

maddv
2
cm = v2cm

8R3ρ
3 madd = 8R3ρ

3

This result aligns with various literature. Though we need to be vary
of the fact that only half of the space we consider is actually occupied
with water, due to the symmetrical nature of magnetic equations, it’s
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easy to see that if we set that the top half of the space contributes
0 energy, we get a number twice as small. Air has approximately
the same effect on the system as that, so we may consider its energy

change due to the cyllinder to be 0. So we shall use madd = 4R3ρ
3

3 Obtaining the density using measurable quan-
tities

Now that we have the added mass, we can simply consider the system
of water + the cylinder, due to us considering a very short time frame,
we can approximate that no outer forces are acting upon the system
(the only one being gravity which is able to be ignored in this short
of a time frame) so the momentum is conserved. We shall label the
velocity of the cylinder right before the collision as v0 and right after
as v1, due to the speeds being obviously significantly slower than the
speed of sound in water, we may consider the momentum transfer in
water to be effectively instant. Due to the short time frame and slow
speed, little energy is lost due to resulting shockwaves. M is the mass
of the cylinder, ρc its density, while ρ is the density of water which
is well known to be about 1000 kg/m3. The added momentum from
the water is very easily obtained from its added mass. R and h are
the radius and height of the cylinder respectively.

Mv0 = Mv1 + padd
maddv

2
cm

2 = paddvcm
2

padd = maddvcm
Mv0 = Mv1 +maddv1

ρchR
2πv0 = ρchR

2πv1 +maddv1

ρc =
4R3ρ

3 v1
hR2π(v0−v1)

=
4Rρ
3 v1

hπ(v0−v1)

ρc =
4ρ
3π

R
h

1
(
v0
v1

−1)

The quantities R
h and v0

v1
are measurable from the given video without

needing any reference frame.

4 Measurements from the video

To measure the speed of the cylinder, we put the video in a video
viewing tool (VLC) and go frame by frame and screenshot each one.
Then we put the screenshot in an image editing tool (paint.net) where
you can place the mouse cursor approximately near the top of the
cylinder (I considered the top the part where it stops being blurry)
and write down the pixel coordinates given by the programme. All
the screenshots were taken in the same way, so the coordinates are
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absolute, given that the camera is steady (which we shall assume is
the case). We shall also ignore the effects of different viewing angles
from the camera due to us not having enough information about its
whereabouts. Aside from that, the cylinder seems to have constant
height throughout the video, so we can say that the effects from the
camera’s physical placement are irrelevant. (We shall confirm this
when we measure the cylinder’s height).

We chose the frame of impact as a ”frame 0” and measured everyt-
hing relative to that. We only went a few frames forward/backwards
so the effects of gravity/the cylinder going deeper are able to be
ignored. Below this we have an image from the image editing sof-
tware, where the coordinates are visible in the bottom right (the
coordinates are measured such that the upper left corner is (0,0)
and the coordinates grow going to the bottom right. The 2nd co-
ordinate is the y axis which is the only relevant one for velocity.

For calculations we used Excel due to it being convenient. Along
the way we also calculated the standard deviations for the veloci-
ties, which turned out small so we can say that we took a small
enough time frame to ignore the effects of gravity and the likes.
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We can see that in our chosen time frame the velocities are relatively
constant (red indicates v0, while green indicates v1) and with the
small standard deviation we can say with high confidence that our
measurements for the velocities are good. To make our ratio v0

v1
more

accurate we shall say that v0 = 119
4 px/frame and v1 = 65

3 px/frame.

All the measurements for the radius and height are taken in pixels.
The first frame is a random frame when the cylinder just fully falls
into view, while the second frame is frame -3 due to it having a
good view of the cylinder. These 2 frames were picked due to them
being quite far apart but still above the water where refraction might
cause an issue. We can see that the cylinder height and radius are
roughly the same, so the physical effects from the camera’s placement
are able to be ignored. for the ratio R

h we shall use the arithmetic

average of the 2 calculated ratios. R
h = 156

262 + 154
260 As a reminder, we

took ρ = 1000kg/m3

ρc =
4ρ
3π

R
h

1
(
v0
v1

−1)
ρc = 1351.16kg/m3

Of course, here were many opportunities to make a mistake due to
having a quite imprecise measuring tool so this result is by no means
accurate, but we can infer that the density should be somewhere
between 1300 kg/m3 and 1400 kg/m3.
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