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1 Added mass of a thin disk of radius R

In order to solve this problem we will follow the given hints. Hence we first calculate the added mass of a
thin disk with radius R. As given in the hint, we calculate the magnetic polarizability of a superconducting
ellipsoid. The magnetic susceptibility of an ideal diamagnet is χ = −1. The velocity field of the liquid
can be mapped to the magnetic field of the superconductor, since the field is curl- and divergence-free and
tangential to the surface of the body. The kinetic energy of the water is then given by the energy of the
magnetic field.

If we place the superconductor into a homogeneous magnetic field B⃗0(r⃗), due to surface currents a field

B⃗s(r⃗) is created, which is homogeneous inside the superconductor and compensates the external field inside
the superconductor. We need the kinetic energy of the fluid in the rest frame, where we subtract the velocity
field relative to the body, which is identified with B⃗0(r⃗).

We would need to exclude the energy of the magnetic field inside the superconductor, but since we take
the limit of a thin disk, this contribution also vanishes.

Following the hint, we assume that a homogeneously polarized ellipsoid creates a homogeneous field inside
itself. There are multiple ways to show this, for example to brute force calculate the volume integral over
all infinitesimal magnetic dipole contributions. We take this as given here.

We obtain the field energy by

Em =
1

2
m⃗ · B⃗0 (1)

which can be depicted by turning small magnets in the body, which needs an energy of m⃗0 · B⃗(t) per magnet.
The magnetization scales with the magnetic field and thus we get a factor 1/2 if we integrate from 0 to B0.
The magnetic moment of the ellipsoid is given by

m⃗ = VellipsoidM⃗ =
4

3
πR2hM⃗ (2)

where h is the height and in the limit of small h, the ellipsoid becomes a thin disk of radius R.
We have to calculate B⃗0 for a given constant magnetization M⃗ = Mêz of the ellipsoid. Since the magnetic

field is homogeneous, we simply choose the center of the ellipsoid. Consider all points with distance r to
the axis of the magnetization through the center of the ellipsoid. The surface density of the magnetization
J(r) = Md(r) can be evaluated by calculating the thickness d(
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Ampères law in the differential from gives us the magnetization current density, where we assume that
now the thin disk has a magnetization J⃗ = J(r)δ(z)êz:

j⃗m = ∇⃗ × J⃗ (4)

The curl for a vector field A⃗ = f
(√

x2 + y2
)
δ(z)êz with only z-components is given by ∇⃗ × A⃗ =

∂Az

∂y êx − ∂Az

∂x êy = ∂f(r)
∂r (−êϕ)δ(z). Then

j⃗m(r) = − ∂

∂r
J(r)êϕ =

2hMδ(z)

R

r/R√
1− (r/R)2

êϕ. (5)
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This result shows that we can think of the magnetization as realized by ring currents around the center of
the disk. But we know that the magnetic field in the center of a ring current in the xy-plane with radius r
is given by B⃗ = Bêz with

B =
µ0I

2r
. (6)

If we now integrate over all contributing ring currents (so the current density), we obtain the result

B0 =

∫ R

0

µ0jm(r)

2r
dr =

µ0Mh

R

∫ 1
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(7)

Em =
1

2
m⃗ · B⃗0 =

1

µ0

1

2

8

3
R3B2

0 (8)

For a velocity field we would obtain E = 1
2maddv

2
0 we now have to replace the energy per unit volume

and unit of the field 1
2µ0

in case of the magnetic field by the corresponding term for a velocity field, namely

the mass density 1
2ρ, in our case the density of water. We arrive at the final expression for the added mass

of a thin disk of diameter D = 2R completely surrounded by water

madd =
8

3
ρWR3 =

1

3
ρWD3 (9)

2 Extract measurements from the video

Using the open source software Tracker by Physlets, I measure the velocity before and after hitting the
surface as well as the radius-to-height ratio of the cylinder. In figure 1 I show some screenshots of the
program. Since the frame rate is high, we can neglect the gravity acceleration of the mass and do just a
linear fit to the height values. That this fit works sufficiently is seen in the lower plots.

The following results were obtained, where the error is roughly estimated by the fit or the hand-
measurement of the height and width.

v0 = (8.36± 0.08) (10)

v1 = (5.5± 0.5) (11)

H = (0.40± 0.01) (12)

D = (0.98± 0.01) (13)

As already stated in the hint, the measurement of v1 is quite complicated, since it is based only on 3 frames.
This might result in a significant error on the result.

3 Momentum conservation law

Finally, we apply the momentum conservation law. The momentum of the cylinder before it hits the water

is p0 = mcv0. Where mc = ρcHπ
(
D
2

)2
is the mass of the cylinder. After the lower side of the cylinder (a

thin disk) hits the water, also the momentum of the water that is now in motion has to be considered. As
explained in the hint, the impact is plastic and the excess energy is carried away by a shock wave in the
water. The energy-to-momentum ratio is given by the speed of sound in water, which is much higher than
the cylinder speed. Thus it can be neglected. Also, only the space below the cylinder is covered by water, the
upper half space is covered by air. Since air is significantly lighter than water, we can neglect the contribution
and have to use only half of the added mass we obtained before. Note that this is as explained in the other
hints only an approximation for the short times after the cylinder hits the water. Almost immediately, the
water surface is not perfectly flat anymore and the cylinder gets more and more immersed. However directly
after the impact the momentum of the cylinder and the water, that was set into motion by the impact, can
be calculated by p1 =

(
mc +

madd

2

)
v1.

Using that the momentum is conserved p0 = p1, we arrive at the following expression for the density of
the cylinder

ρc =
2

3π

D

H
ρW

(
v0
v1

− 1

)−1

(14)
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4 Result

Inserting the measured values we arrive at the final estimate of the density of the cylinder

ρc = (1.0± 0.2)ρW = (1.0± 0.2) g/mm3 (15)

The error is estimated by Gaussian error propagation and ρW ≈ 1 g/mm3. As explained before the error on
the density estimate it very high due to the difficulty to measure v1.

Figure 1: Screenshots of the Tracker software. (a) shows the tracked points. For this the upper left edge of
the cylinder was used. (b) shows the height and width measurement. (c) shows the linear fit for the velocity
before hitting the water and (d) shows the fit for the velocity after hitting the water.
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