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The scraps will get magnetized by the magnetic field of the permanent magnet. The interaction force
between the permanent magnet and the magnetized scraps will pull the scraps upwards, and the scraps will
get lifted when the magnetic force becomes equal to the weight of the scraps.

The magnetic field of the permanent magnet will be equal to the field of a magnetic dipole:

Bm(r) =
µ0

4π

m0

r3
[3(m̂0 · r̂)r̂ − m̂0]

Here, m0 = |m0| is the magnitude of the magnetic dipole vector of the magnet, m̂0 is the unit vector of the
magnetic dipole vector pointing towards the scraps.

Since the magnetic field is stronger when r is smaller, the scraps directly below the magnet will be lifted
first. For those scraps, we can simplify the magnetic field as below:

Bm(r) =
µ0

2π

m0

r3

1. Plates: From the boundary condition

B⊥
in = B⊥

out

we know that the magnetic field inside the thin plates will be equal to

B = Bm

Also, the fact that the plates are linear ferromagnets with µ≫ 1 gives us

B = µ0(H+M) = µµ0H

⇒ M =

(
1− 1

µ

)
B

µ0
≈ B

µ0

The fact that the dimensions of the sheet scraps are much less than a allows us to model them as perfect
magnetic dipoles with m = VM, where V is the volume of a scrap. Hence, the interaction force between
the permanent magnet and a scrap can be shown as

F(r = a) = m(∇ ·Bm)

= V · 1

µ0

(µ0

2π

m0

a3

)
· ∂
∂r

(µ0

2π

m0

r3

) ∣∣∣∣
a

=
Vm0

2πa3
· −3µ0m0

2πa4

⇒ F = −3µ0V m
2
0

4π2a7
m̂0
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The minus sign at the beginning shows that the force is an attracting force, pulling the scrap up. Setting
this force equal to the weight of the scrap, we get

3µ0m
2
0

4π2a7
= ρg

2. Spheres: According to Maxwell’s laws, we know that


∇ ·B = 0

∇×H = jf +
∂D

∂t

We know that there is no free current, no electric field, and also that B = µµ0H. From these, we get{
∇ ·H = 0

∇×H = 0

These equations allow us to look for a solution of the equation

∇2ψ = 0

where H = −∇ψ, and ψ is the magnetic scalar potential.

We also have the following boundary conditions:
H⊥

out = µH⊥
in

H
∥
out = H

∥
in

Hout(r → ∞) = Hm

The solution that fits these boundary conditions isψout = −Hm · r+A
Hm · r
r3

ψin = BHm · r

Here, the first part of ψout is the limit value at r → ∞, and the second part is the only solution that
satisfies the Laplace equation, depends only on one constant vector (H), and vanishes at infinity. ψin is the
only solution which satisfies the Laplace equation and is finite at the center of the sphere. Plugging these
potentials back to the equation,


Hout = −Hm

[(
2A

r3
+ 1

)
cos θr̂ +

(
A

r3
− 1

)
sin θθ̂

]
Hin = Hm

(
A

r3
− 1

)
(cos θr̂ − sin θθ̂)

From the boundary conditions, we get that
B =

A

R3
− 1

A =
µ− 1

µ+ 2
R3
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Here, R is the radius of the sphere. These give us the field inside the sphere as

Hin =
3

µ+ 2
Hm

From this, we find the magnetization of the sphere as

M =
µ− 1

µ+ 2

3Bm

µ0

Using the expression for the force we found in the previous part, we get

F = V · µ− 1

µ+ 2

3

µ0
· µ0

2π

m0

b3
· −3µ0m0

2πb4

= −9µ0V m
2
0

4π2b7
µ− 1

µ+ 2
m̂0

This gives us

9µ0m
2
0

4π2b7
µ− 1

µ+ 2
= ρg =

3µ0m
2
0

4π2a7

Finally, using that µ≫ 1, we find

b = 31/7a ≈ 1.17a
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