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In the presence of the magnetic field of the permanent magnet, the scrap pieces will be mag-
netized. The interaction of the induced magnetization with the magnet’s field will produce a force
since the field is homogenous. The interaction energy of a magnetic dipole m in an external field
B is −m ·B. If we denote the magnet’s field B0, the force in the z direction can be calculated as

Fz = −
∫
V

∂

∂z
(−dm ·B0) =

∫
V

M
∂B0

∂z
dV (1)

where the integration is over the volume V of the scrap particle and M is its magnetization.
For finding the field of the permanent spherical magnet and the magnetization of the spherical

particles the following fact will be used: the field outside of a homogeneously magnetized spherical
magnet is equal to that of an ideal magnetic dipole of magnetic moment equal to that of the sphere
and is homogenous inside it where it is identically equal

2

3
µ0M (2)

The proof is given in the appendix.
Let the magnetic moment of the permanent magnet be m = −mẑ and let its center be the

origin of the coordinate system. Its field is then given as

B0(r) =
µ0

4π

1

r3
[3(m · r̂) · r̂−m] (3)

The exact form is not of deciding importance but what is important is that is falls of as 1/r3 and
that it is directed in the same direction as the magnetic moment everywhere on the symmetry
axis.

Since the particles are small with respect to their distance from the magnet and because the
particles directly under the magnet will get lifted the easiest, we may take only the lowest terms
in the expansion of B0 around the position of the particles in this limit. In fact, in calculating
the magnetization, we will keep only the first term - we will regard the magnetizing field to be
homogenous.

We presume that the field at the particle’s position is well bellow the values needed for satu-
ration so that the relative permeability can be taken to be independent of the field strength. In
other words, we presume constant permeability. The magnetization M is then related to the total
field as

M = χmH =
χm

µ0(1 + χm)
B (4)

Because of linearity we may therefore assume that due to the small size of the particles the
contributions to total magnetization from higher order terms in B0 are negligible.
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The magnetization of a sphere due to a homogenous field can be calculated using the fact that
the field due to the magnetization of a homogeneously magnetized sphere is homogenous as well.
Obviously, the induced magnetization will be homogenous. The total field is therefore the sum of
the external field and the field due to magnetization (Eq. 2)

B = B0 +
2

3
µ0M (5)

Using eq.4 we arrive at

Msph =
3χm

3 + χm

B0

µ0

≈ 3
B0

µ0

(6)

where we have approximated using the fact that xm ≫ 1 in ferromagnetic materials.
The magnetization of a thin plate due to a homogenous field can also be taken to be homogenous

up to first order and the field is effectively unchanged within it by the magnetization’s field. To
see why we may regard the process of magnetization as an iterative process. The external field B0

induces homogenous magnetization M0 = χmB0/µ0(1 +χm) ≈ B0/µ0 which in turn produces the
field B1 in addition to B0, which then induces magnetization M1 and so on1. The total field will
be B =

∑∞
n=0Bn and the total magnetization M =

∑∞
n=0 Mn. We will however show that in the

case of a thin plate only the M0 term is appreciable.
Since M0 is homogenous, its effect is that of a surface current density K0 along the edge of the

plate,
K0 = M0 × n̂ ⇒ K0 ≈ M0 (7)

The field this current produces is of order µ0K0 = µ0M0 = B0 very close to the edge but at any
appreciable distance from the edge with respect to the width t of the plate, the surface current
looks like a line current of magnitude I = K0t = M0t which produces a negligible field within
the plate for small enough t. The term M1 will therefore be a very thin ring of magnetization
of magnitude of the same order as M0 which produces a comparatively extremely small field in
the neighbourhood of the edge. It is therefore expected that the total magnetization M will differ
somewhat from M0 only in a very thin ring around the edge of the plate. For thin enough plates
we can therefore disregard the higher order contributions to M than M0 when calculating the
force.

Mplt ≈
B0

µ0

(8)

It remains to determine ∂B0

∂z
. Again, we may take only the first order contribution in the

expansion of ∂B0

∂z
around the position of the particle r0 = −r0ẑ. Because of azimuthal symmetry in

the permanent magnet’s field ∂B0

∂z
will be in the −ẑ direction and its magnitude will be proportional

to m
r40

. From eq.3 it can be calculated to be

∂B0

∂z

∣∣∣∣
r0

= −6µ0m

4πr40
ẑ (9)

The force at r0,
B0(r0) = −µ0m

2πr30
ẑ (10)

1Courtesy of linearity.
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Using eq.1, the force on a sphere under the magnet is then

Fz =

∫
V

M · ∂B0

∂z
dV =

∫
V

3

µ0

(
− µ0m

2πr30

)(
− 6µ0m

4πr40

)
dV (11)

⇒
(dFz

dV

)
sph

=
9µ0m

2

4π2r70
(12)

The force on a plate (the only difference being 3 times smaller magnetization),(dFz

dV

)
plt

=
3µ0m

2

4π2r70
(13)

In order to lift the particles, the force per volume needs to be equal to ρg, where ρ is the material’s
density and g is gravitational acceleration.(dFz

dV

)
sph

(−bẑ) =
(dFz

dV

)
plt
(−aẑ) (14)

3

b7
=

1

a7
(15)

b =
7
√
3a (16)

Appendix
In order to prove that the magnetic field inside the magnetized ball of homogenous magnetization
M is homogeneous we are going to take inspiration form an analogous electrostatic problem.
Firstly, since ∇ ·B = 0, we have ∇ ·H = −∇ ·M where H is the auxiliary field. Also, because
∇ × H = 0, as there aren’t any free currents, we conclude, by analogy with electrostatics, that
the field H is a field analogous to E with −∇ · M being its source density analogous to charge
density. Furthermore, we may introduce a potential ϕh of the field, H = −∇ϕh. In the case of our
sphere, the only points where ∇·M doesn’t vanish are on the ball’s surface where via Gauss’ law
we find an effective source surface density n̂ ·M. The problem is analogous to a homogeneously
polarized ball of polarization P if we simply replace H ↔ E and M ↔ P. This inspires us to find
H inside the sphere via the famous displaced homogeneously charged balls trick.

The equivalent source distribution is achieved in a superposition of two infinitesimally displaced
uniformly charged balls of opposite source (charge) densities of magnitude M/d where d is the
displacement which is in the direction s M and which points from the center of the ball of negative
source density to the center of the ball with positive source density. The two source densities
cancel at points inside both balls and for small d only a thin layer of source density remains on
the surface. If we regard only a small segment of area at the surface whose radius vector from the
ball’s center closes an angle θ with the vertical direction along which M is directed (Fig. 1b), it is
easy to see that its surface source density is

cos θdAM
d

A
= cos θM = n̂ ·M (17)

The field produced inside the balls can be found via Gauss’ law,

H+ =
1

4π

(M
d

4

3
r31π

)r1
r31

=
4πM

3d
r1 (18)

H− = −4πM

3d
r2 (19)
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(a) (b)

Figure 1

where H+ and H− are the fields produced by the positive and negative source ball respectively and
r1 and r2 are the distances of a point from the centers of the positive and negative ball respectively
(Fig.1a).

r1 = (z − d/2)ẑ+ ρρ̂ (20)
r2 = (z + d/2)ẑ+ ρρ̂ (21)

The total field is then
H = H+ +H− = −M

3
ẑ (22)

In the limit of d = 0, the H field is homogenous everywhere inside the magnetized ball and the
magnetic field B is

B = µ0(H+M) =
2

3
µ0M (23)

A potential ϕh corresponding to the field inside the ball is

ϕh =
Mz

3
=

M · r
3

=
m · r
4πR3

(24)

where r is the radius vector from the center, m = 4R3πM/3 is the total magnetic moment of the
ball and R is the radius of the ball. On the surface of the ball this potential corresponds to the
potential produced by a dipole m in the center

ϕh =
m · r
4πr3

(25)

But by analogy with electrostatics, this potential solves the Laplace equation ∇2ϕh = 0 outside
the ball so it must be the potential produced by the ball outside of it. Since outside B = µ0H, the
ball produces a field equal to that of a single magnetic dipole at its center outside.
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