Physics cup 2024 Problem 4

Val Karan

1 Introduction

The solution is organized as follows: First I introduce the Runge-Lenz vector (eccentricity vector), a very useful and not so well known concept in astrophysics problems such as this one. I will also prove some lemmas considering the Runge-Lenz vector. I will also relate the angular momentum and area sweeping rate L of the satellites. Then I will use these Lemmas to obtain an (achievable) upper bound on $\left|\vec{v}_{2}-\vec{v}_{1}\right|$, the relative velocity of the satellites.

2 Runge-Lenz vector lemmas

Let us consider a body of mass m in an elliptical orbit around a much heavier object M (for example a satellite orbiting Earth). Then this heavier object is approximately motionless and is situated at one of the foci of the elliptical orbit. Let \vec{r} be the vector connecting M and m. Let \vec{v} be the velocity of m relative to M. Also let \vec{J} be the angular momentum of m relative to M. The Runge-Lenz vector is defined as:

$$
\begin{equation*}
\vec{\varepsilon}=\frac{1}{G m M} \vec{v} \times \vec{J}-\hat{r} \tag{1}
\end{equation*}
$$

Here $\hat{r}=\frac{\vec{r}}{r}$. Note that $\vec{J}=J \hat{z}$ (we are working in the cylindrical coordinate system (r, ϕ, z) with the origin at M).

2.1 Lemma 1

We claim that $\dot{\vec{\varepsilon}}=0$ i.e. the conservation of the Runge-Lenz vector. Proof:

$$
\begin{aligned}
\dot{\vec{\varepsilon}} & =\frac{1}{G m M} \dot{\vec{v}} \times \vec{J}-\dot{\hat{r}}=\frac{1}{G M m}\left(-\frac{G M}{r^{2}}\right)(\hat{r} \times \hat{z}) J-\dot{\phi} \hat{\phi} \\
& =\frac{J}{m r^{2}} \hat{\phi}-\dot{\phi} \hat{\phi}=0
\end{aligned}
$$

Here we used $\dot{\vec{J}}=0$ (conservation of angular momentum), Newtons second law for m, and some simple vector identities in cylindrical coordinates.

2.2 Lemma 2

We claim that $\vec{\varepsilon} \cdot \vec{\varepsilon}=e^{2}$, where e is the eccentricity of the elliptical orbit. Proof:

$$
\vec{\varepsilon} \cdot \vec{\varepsilon}=\left(\frac{1}{G m M} \vec{v} \times \vec{J}-\hat{r}\right)^{2}=\frac{v^{2} J^{2}}{(G m M)^{2}}-\frac{2 J r \dot{\phi}}{G m M}+1=1+\frac{2 E J^{2}}{m(G m M)^{2}}=e^{2}
$$

The last equality is a well known formula for the eccentricity (E is the energy of m).

2.3 Lemma 3

We claim $J=2 m L$. Proof: consider the triangle $\vec{r}(t), \vec{r}(t+\mathrm{d} t), \mathrm{d} \vec{r}(t)$. Its area is just $L \mathrm{~d} t$. It is also just $\frac{1}{2} r^{2} \dot{\phi} \mathrm{~d} t$. Thus $L=\frac{1}{2} r^{2} \dot{\phi}=\frac{J}{2 m}$. Corollary:

$$
\begin{equation*}
\vec{\varepsilon}=\frac{2 L}{G M} \vec{v} \times \hat{z}-\hat{r} \Rightarrow \vec{v}=\hat{z} \times(\vec{v} \times \hat{z})=\frac{G M}{2 L} \hat{z} \times(\vec{\varepsilon}+\hat{r})=\frac{G M}{2 L}(\vec{\chi}+\hat{\phi}) \tag{2}
\end{equation*}
$$

Where $\vec{\chi}$ is the vector with magnitude e perpendicular to $\vec{\varepsilon}$.

3 Solution

In each moment by lemma 3 :

$$
\vec{v}_{1}=\frac{G M}{2 L_{1}}\left(\vec{\chi}_{1}+\hat{\phi}_{1}\right), \vec{v}_{2}=\frac{G M}{2 L_{2}}\left(\vec{\chi}_{2}+\hat{\phi}_{2}\right)
$$

Then:

$$
\left(\vec{v}_{2}-\vec{v}_{1}\right)^{2}=\left(\frac{G M}{2}\right)^{2}[\underbrace{\left(\frac{\overrightarrow{\chi_{2}}}{L_{2}}-\frac{\overrightarrow{\chi_{1}}}{L_{1}}\right)}_{\vec{A}}+\underbrace{\left(\frac{\hat{\phi}_{2}}{L_{2}}-\frac{\hat{\phi}_{1}}{L_{1}}\right)}_{\vec{B}}]^{2}
$$

We need only to bound $(\vec{A}+\vec{B})^{2}=A^{2}+B^{2}+2 \vec{A} \cdot \vec{B}$. Since \vec{A} is a fixed vector, and vector \vec{B} is of bounded magnitude:

$$
|\vec{B}|=\left|\frac{\hat{\phi}_{2}}{L_{2}}-\frac{\hat{\phi}_{1}}{L_{1}}\right| \leq \frac{1}{L_{1}}+\frac{1}{L_{2}}
$$

Here we use that the period is irrational and thus the unit vectors $\hat{\phi}_{1}, \hat{\phi}_{2}$ achieve all possible configurations. Also $\vec{A} \cdot \vec{B} \leq A B$. Thus:

$$
(\vec{A}+\vec{B})^{2} \leq A^{2}+2 A\left(\frac{1}{L_{1}}+\frac{1}{L_{2}}\right)+\left(\frac{1}{L_{1}}+\frac{1}{L_{2}}\right)^{2}=\left(A+\frac{1}{L_{1}}+\frac{1}{L_{2}}\right)^{2}
$$

We can easily calculate:

$$
A^{2}=\left(\frac{\overrightarrow{\chi_{2}}}{L_{2}}-\frac{\overrightarrow{\chi_{1}}}{L_{1}}\right)^{2}=\frac{e_{1}^{2}}{L_{1}^{2}}+\frac{e_{2}^{2}}{L_{2}^{2}}-2 \frac{e_{1}}{L_{1}} \frac{e_{2}}{L_{2}} \cos \alpha
$$

Since α is the angle between $\vec{\chi}_{1}, \vec{\chi}_{2}$. Thus we may put this into the expression for the relative velocity:

$$
\begin{equation*}
\left|\vec{v}_{2}-\vec{v}_{1}\right| \leq \frac{G M}{2 L_{1} L_{2}}\left[\sqrt{e_{1}^{2} L_{2}^{2}+e_{2}^{2} L_{1}^{2}-2 e_{1} e_{2} L_{1} L_{2} \cos \alpha}+L_{1}+L_{2}\right] \tag{3}
\end{equation*}
$$

Thus since this value is in fact obtainable (for $\hat{\phi}_{1}, \hat{\phi}_{2}$ parallel to \vec{A}), it is the maximal possible value. More specifically, for $L_{1}=L_{2}=L$ and $\alpha=90^{\circ}$ (i.e. $\cos \alpha=0$) we have:

$$
\begin{equation*}
\left|\vec{v}_{2}-\vec{v}_{1}\right|_{\max }=\frac{G M}{2 L}\left[\sqrt{e_{1}^{2}+e_{2}^{2}}+2\right] \tag{4}
\end{equation*}
$$

Note: This result can be easily geometrically interpreted by a vector diagram. The vector \vec{B} lies in the circle of radius $\frac{1}{L_{1}}+\frac{1}{L_{2}}$ (Figure 1).

Figure 1: the vector diagram with \vec{A}, \vec{B}, note that B must lie inside the circle with centre A and radius $\frac{1}{L_{1}}+\frac{1}{L_{2}}$, obviously point C is the farthest possible point that the vector sum $\vec{A}+\vec{B}$ can achieve, its distance from the origin being $A+\frac{1}{L_{1}}+\frac{1}{L_{2}}$

