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1 Introduction

The solution is organized as follows: First I introduce the Runge-Lenz vector (eccentricity vector), a very useful
and not so well known concept in astrophysics problems such as this one. I will also prove some lemmas considering
the Runge-Lenz vector. I will also relate the angular momentum and area sweeping rate L of the satellites. Then
I will use these Lemmas to obtain an (achievable) upper bound on |~v2 −~v1|, the relative velocity of the satellites.

2 Runge-Lenz vector lemmas

Let us consider a body of mass m in an elliptical orbit around a much heavier object M (for example a satellite
orbiting Earth). Then this heavier object is approximately motionless and is situated at one of the foci of the
elliptical orbit. Let ~r be the vector connecting M and m. Let ~v be the velocity of m relative to M . Also let ~J be
the angular momentum of m relative to M . The Runge-Lenz vector is defined as:

~ε =
1

GmM
~v × ~J − r̂ (1)

Here r̂ = ~r
r . Note that ~J = Jẑ (we are working in the cylindrical coordinate system (r,φ,z) with the origin at M).

2.1 Lemma 1

We claim that ~̇ε = 0 i.e. the conservation of the Runge-Lenz vector. Proof:

~̇ε =
1

GmM
~̇v × ~J − ˙̂r =

1

GMm

(
−GM

r2

)
(r̂ × ẑ)J − φ̇φ̂

=
J

mr2
φ̂− φ̇φ̂ = 0

Here we used ~̇J = 0 (conservation of angular momentum), Newtons second law for m, and some simple vector
identities in cylindrical coordinates.

2.2 Lemma 2

We claim that ~ε · ~ε = e2, where e is the eccentricity of the elliptical orbit. Proof:

~ε · ~ε =
(

1

GmM
~v × ~J − r̂

)2

=
v2J2

(GmM)2
− 2Jrφ̇

GmM
+ 1 = 1 +

2EJ2

m(GmM)2
= e2

The last equality is a well known formula for the eccentricity (E is the energy of m).

2.3 Lemma 3

We claim J = 2mL. Proof: consider the triangle ~r(t), ~r(t+ dt), d~r(t). Its area is just Ldt. It is also just 1
2r

2φ̇dt.
Thus L = 1

2r
2φ̇ = J

2m . Corollary:

~ε =
2L

GM
~v × ẑ − r̂ ⇒ ~v = ẑ × (~v × ẑ) = GM

2L
ẑ × (~ε+ r̂) =

GM

2L
(~χ+ φ̂) (2)

Where ~χ is the vector with magnitude e perpendicular to ~ε.
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3 Solution

In each moment by lemma 3:

~v1 =
GM

2L1
(~χ1 + φ̂1), ~v2 =

GM

2L2
(~χ2 + φ̂2)

Then:

(~v2 − ~v1)2 =

(
GM

2

)2


(
~χ2

L2
− ~χ1

L1

)
︸ ︷︷ ︸

~A

+

(
φ̂2
L2
− φ̂1
L1

)
︸ ︷︷ ︸

~B


2

We need only to bound ( ~A + ~B)2 = A2 + B2 + 2 ~A · ~B. Since ~A is a fixed vector, and vector ~B is of bounded
magnitude:

| ~B| =

∣∣∣∣∣ φ̂2L2
− φ̂1
L1

∣∣∣∣∣ ≤ 1

L1
+

1

L2

Here we use that the period is irrational and thus the unit vectors φ̂1, φ̂2 achieve all possible configurations. Also
~A · ~B ≤ AB. Thus:

( ~A+ ~B)2 ≤ A2 + 2A

(
1

L1
+

1

L2

)
+

(
1

L1
+

1

L2

)2

=

(
A+

1

L1
+

1

L2

)2

We can easily calculate:

A2 =

(
~χ2

L2
− ~χ1

L1

)2

=
e21
L2
1

+
e22
L2
2

− 2
e1
L1

e2
L2

cosα

Since α is the angle between ~χ1, ~χ2. Thus we may put this into the expression for the relative velocity:

|~v2 − ~v1| ≤
GM

2L1L2

[√
e21L

2
2 + e22L

2
1 − 2e1e2L1L2 cosα+ L1 + L2

]
(3)

Thus since this value is in fact obtainable (for φ̂1, φ̂2 parallel to ~A), it is the maximal possible value. More
specifically, for L1 = L2 = L and α = 90° (i.e. cosα = 0) we have:

|~v2 − ~v1|max =
GM

2L

[√
e21 + e22 + 2

]
(4)

Note: This result can be easily geometrically interpreted by a vector diagram. The vector ~B lies in the circle
of radius 1

L1
+ 1

L2
(Figure 1).
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Figure 1: the vector diagram with ~A, ~B, note that B must lie inside the circle with centre A and radius 1
L1

+ 1
L2

,
obviously point C is the farthest possible point that the vector sum ~A+ ~B can achieve, its distance from the

origin being A+ 1
L1

+ 1
L2
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