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Task

Two satellites orbit Earth on the same plane along elliptic paths of eccentricities e1 and e2 respectively.
The angle between their major axes is α. The rate at which a line segment connecting a satellite and
the Earth’s centre sweeps out an area is L1 and L2 respectively. What is the maximal relative velocity
of the satellites? Provide also a simplified answer for α = 90◦ and L1 = L2. The ratio of the orbital
periods of the satellites is an irrational number. Earth’s mass is denoted by M , and the gravitational
constant by G.

Solution

Assumptions

We assume that the satellites have a negligible mass compared to that of the Earth. Hence, we can
exclude gravitational interactions between them and assume that the Earth is at rest in the center of
mass frame.

Furthermore, since the ratio of the orbital periods of the satellites is an irrational number, the satellites
can both be at arbitrary positions on their orbit at a certain point in time. This is because the satellites
are never both at the same position twice in time. If this were the case, then the time nT1 = mT2

would have elapsed between these events, with T1 and T2 denoting the periods of the satellites and
n,m ∈ N, and T1/T2 would be rational. Thus, after the times nT1, n ∈ N, satellite 2 is always at a
different point on its orbit and gets arbitrarily close to any position as time passes.

General aspects of the movement of a satellite

Before starting to explicitly deal with the problem, some basic properties of the motion of a satellite
are outlined.

Let r = (r cosφ, r sinφ) be the time-varying position vector pointing from the center of the Earth to
the satellite. The velocity of the latter relative to the Earth is v = ṙ. Having the mass m, the energy
E and the angular momentum l, the satellite moves along the following elliptical orbit:

r(φ) =
p

1 + e cosφ
, where p =

l2

Gm2M
and e =

√
1 +

2El2

G2m3M2
< 1.

E and l are constant over time as gravity is a conservative central force. At φ = 0 the satellite is in the
perihelion of its orbit, i.e. r gets minimal. At φ = π it is in the aphelion. e is called the eccentricity
of the ellipse. Its semi-major axis is given by

a =
r(0) + r(π)

2
=

1

2

(
p

1 + e
+

p

1− e

)
=

p

1− e2
.
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Figure 1: Elliptic path of a satellite and its velocities

This yields the following expressions for the angular momentum and the energy:

l =
√

Gm2Ma (1− e2) and E = −
G2m3M2

(
1− e2

)
2l2

= −GmM

2a
. (1)

We can also find the velocity of a satellite as a function of its distance from the Earth. As the total
energy is given by

E =
mv2

2
− GmM

r
= −GmM

2a
,

we obtain by rearranging

v2 = GM

(
2

r
− 1

a

)
.

This is the Vis-viva equation. The velocity of a satellite becomes maximal when it passes through the
perihelion of its orbit. Then r = a (1− e) and hence

v2max =
GM

a
· 1 + e

1− e
. (2)

Velocity vectors of the satellites

In order to find the maximum relative velocity, our goal is to first display all the velocity vectors that
the satellites assume in the course of a revolution around the Earth.

The movement of a satellite is determined by Newton’s law of gravity. If it passes through the point
r = (r cosφ, r sinφ), the change in velocity is given by

dv
dt

= −GM

r2
·
(
cosφ
sinφ

)
. (3)

In an infinitesimal time step, the line segment connecting the satellite and the Earth’s centre sweeps
out the area

dA =
|r × vdt|

2
.
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Figure 2: Finding the maximal relative velocity in the case that the two satellites orbit the Earth in
the same direction (a) or in opposite directions (b).

As the angular momentum is given by l = m|r × v| = mr2φ̇,

L :=
dA
dt

=
l

2m
=

r2φ̇

2
,

which is constant over time. Applying the chain rule, we thus also obtain

dv
dt

= φ̇ · dv
dφ

=
2L

r2
· dv
dφ

. (4)

Comparison between (3) and (4) gives

dv
dφ

= −GM

2L
·
(
cosφ
sinφ

)
.

Hence, assuming that the satellite is in the perihelion at φ = 0, we find by integration

v(φ) = vmax −
GM

2L
·
(

sinφ
1− cosφ

)
.

The velocity vectors thus lie on a circle with center vmax − GM
2L e2 and radius GM

2L (see Figure 1).

Depending on whether the satellites revolve around the Earth in the same direction (a) or in opposite
directions (b), the angle between the two maximum (or minimum) velocities is α (a) or π−α (b) (see
Figure 2). In each case, the circles on which the velocity vectors lie are overlapping. The maximal
relative velocity, call it Va or Vb, corresponds to the maximal distance between two points lying on
each of the circles. With the designations given in the sketch, it can be calculated as follows:

(a) : Va = r1 + r2 +
√

s21 + s22 − 2s1s2 cosα

(b) : Vb = r1 + r2 +
√
s21 + s22 + 2s1s2 cosα
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As we have already seen, r = GM
2L . Moreover, using Equation (1) for the angular momentum, we can

express the maximal velocity stated in Equation (2) as follows:

vmax =
GMm(1 + e)

l
=

GM(1 + e)

2L
.

Hence,

s = vmax − r =
GMe

2L
.

Finally, we obtain

(a) : Va =
GM

2

 1

L1
+

1

L2
+

√(
e1
L1

)2

+

(
e2
L2

)2

− 2e1e2 cosα

L1L2


(b) : Vb =

GM

2

 1

L1
+

1

L2
+

√(
e1
L1

)2

+

(
e2
L2

)2

+
2e1e2 cosα

L1L2


In the case that α = π/2, the maximal relative velocity is the same regardless of whether the satellites
orbit in the same direction or not and equals

V =
GM

2

 1

L1
+

1

L2
+

√(
e1
L1

)2

+

(
e2
L2

)2
 .

Furthermore, in the case that additionally it holds that L1 = L2 =: L,

V =
GM

2L

(
2 +

√
e21 + e22

)
.
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