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§1 Specific angular momentum and areal velocity

Consider the situation of a satellite (of mass m) orbiting the Earth (of mass M). As
we know from Kepler’s first law, its trajectory is elliptical, with the earth in one of the
ellipse’s foci. Moreover, as the gravitational force acting on the satellite is centripetal,
angular momentum is conserved. We thus define the specific angular momentum of the
satellite as

h = r× v =
L

m
.

Since r = rêr and v = ṙêr + rθ̇êθ, we obtain

h =

∣∣∣∣∣∣
êr êθ k̂
r 0 0

ṙ rθ̇ 0

∣∣∣∣∣∣ = r2θ̇k̂.

A related concept is that of areal velocity, i.e. the rate at which a line segment
connecting a satellite and the Earth’s centre sweeps out an area. By considering two very
close points P (t) and P (t+ dt) at which we can find the satellite,

dA =
1

2
|r(t)× r(t+ dt)| = 1

2
|r(t)× (r(t+ dt)− r(t))| = 1

2
|r(t)× v(t)|dt,

so
dA

dt
=

|r× v|
2

=
h

2
=

r2θ̇

2
.

E

P (t)

P (t+ dt)

r(t)

r(t+ dt)

dA

θ

As h is constant, we have thus deduced (more or less rigorously) Kepler’s second
law, stating that the areal velocity is constant, and equal to half of the specific angular
momentum.

§2 The velocity of an orbiting satellite

Let’s analyze the motion of a satellite orbiting the Earth (counterclockwise) on an
elliptical trajectory of eccentricity ε < 1. Newton’s second law gives

a = −GM

r2
êr = −GM

h
θ̇êr =

GM

h
˙̂eθ.
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Integrating yields

v =
GM

h
êθ + v0,

where v0 is a to-be-determined constant vector on integration. Considering the velocity
of the satellite at the perigee and apogee respectively, we see that both v and êθ have
vertical direction, so v0 = v0ĵ. On the other hand, conserving the (specific) angular
momentum, we have

h = a(1− ε)̂i×
(
GM

h
ĵ+ v0ĵ

)
= −a(1 + ε)̂i×

(
−GM

h
ĵ+ v0ĵ

)

⇐⇒ (1− ε)

(
GM

h
+ v0

)
= (1 + ε)

(
GM

h
− v0

)
.

Expanding the brackets will eventually give us v0 =
GMε
h .

Therefore, we have calculated the velocity of the satellite as

v =
GM

h
êθ +

GMε

h
ĵ.

§3 Maximum relative velocity

In our problem, we are given L1,2 and ε1,2. Also,
T1
T2

∈ R\Q. We will see later why this as-
sumption is crucial (and how the problem’s conclusion should have been better rephrased).

Take ĵ1 and ĵ2 be the two y-unit vectors specific to the two elliptical trajectories. The

condition on ĵ1 and ĵ2 is just ĵ2 =

(
cosα − sinα
sinα cosα

)
ĵ1.

E

S1

S2

r1(t)

r2(t)

ĵ1
ĵ2

v1(t)

v2(t)

α

α

Therefore the relative velocity is

vrel = v1 − v2 =
GM

2

(
êθ1
L1

− êθ2
L2

+
ε1ĵ1
L1

− ε2ĵ2
L2

)
.

By the triangle inequality,

vrel =
GM

2

∣∣∣∣∣ êθ1L1
− êθ2

L2
+

ε1ĵ1
L1

− ε2ĵ2
L2

∣∣∣∣∣ ≤ GM

2

(
1

L1
+

1

L2
+

∣∣∣∣∣ε1ĵ1L1
− ε2ĵ2

L2

∣∣∣∣∣
)
.
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By the law of cosines, we finally arrive at

vmax =
GM

2

(
1

L1
+

1

L2
+

√
ε21
L2
1

+
ε22
L2
2

− 2ε1ε2 cosα

L1L2

)
.

For the particular version L1 = L2 = L and α = 90◦, we get

vmax =
GM

L

(
1 +

1

2

√
ε21 + ε22

)
.

We would normally end it here, but a question begs to be asked, namely if this
maximum value can be achieved. Indeed, the equality case in the triangle inequality
corresponds to when all (three) vectors are collinear and have the same orientation. So

êθ1 and êθ2 must have the same orientation as ε1 ĵ1
L1

− ε2 ĵ2
L2

. So the maximum is achieved
for exactly one position for each satellite.

This is where T1
T2

∈ R \Q comes in. Consider the natural bijection between a satellite’s
trajectory and R/TZ (every point on the path corresponds to the moments in time
t0, t0+T, t0+2T, . . . ). Therefore, when satellite 1 finds itself at position P0, corresponding
to moments t0 + nT1, for n ∈ Z, satellite 2 is at a position corresponding to t0 + nT1

(mod T2) (in the quotient group). The key is thus to understand the set

{nT1 (mod T2) | n ∈ Z} ⊂ [0, T2).

A theorem due to Kronecker states that

Theorem 3.1 (Kronecker)

Let α ∈ R \Q. Then the sequence ({nα})n≥1 is dense in [0, 1).

It’s clear how it also implies that the above set is dense in [0, T2). What this basically says,
is that when we find satellite 1 at a certain position P0, satellite 2 can be almost anywhere,
densely speaking. Therefore, when satellite 1 finds itself at the equality position for the
maximum relative velocity, satellite 2 can get arbitrarily close to its equality position.
Even though there are cases when both satellites can never both be at the equality
position, their relative velocity can gen arbitrarily close to vmax.

Thus, the more correct problem conclusion should have been to find the supremum of
the relative velocity of the satellites, rather than the maximum.
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