Problem 2 - Image of a circle

Lukas Schicht

Physics Cup 2024

Task

In the figure below, the ellipse is a real image of a circle created by an ideal thin lens. The point F is the closer-to-the-ellipse main focus of the lens. Optical axis lies in the plane of this figure. Construct geometrically the centre O of this thin lens.

Structure of this document

On the next page two sketches are shown that illustrate the imaging process. These are then used to motivate the procedure applied in Geo Gebra.

Sketches

Figure 1: Rays tangent to the circle are also tangent to the ellipse after refraction. Moreover, tangent lines to the circle are mapped to tangents to the ellipse.

Figure 2: Parallel incident rays converge to a point in the focal plane.

Procedure in Geo Gebra

In the following, the constructions carried out in Geo Gebra are described and it is explained with the help of the above sketches why the point O found in this way represents the centre of the thin lens.

Objects drawn in Geo Gebra	Designation	Physical motivation
Both tangents to the ellipse that run through F Contact points of the tangent lines on the ellipse	f and g (orange) A and B	The two rays of light that originate tangentially from the circle at the points A^{\prime} and B^{\prime} and hit the lens perpendicularly run along the orange straight lines drawn in Geo Gebra after refraction (see Figures 1 and 3).
Line through A and B Straight line parallel to h passing through F and Perpendicular line passing through F	$\begin{aligned} & h \text { (blue) } \\ & i \text { (blue) } \\ & j \text { (red) } \end{aligned}$	Just as the line $A^{\prime} B^{\prime}$ is perpendicular to the optical axis, so is $h=A B$. This makes it possible to draw the focal plane (i) and the optical axis (j).
Tangent lines to the ellipse that run parallel to h Contact points of the tangents on the ellipse	$\begin{aligned} & \hline k \text { and } l \\ & (\text { green }) \end{aligned} \begin{aligned} & C \text { and } D \end{aligned}$	The images of the two straight lines that run perpendicular to the optical axis and touch the circle at the points C^{\prime} and D^{\prime} are tangent lines to the ellipse that are also perpendicular to the optical axis (see Figure 1).
Lines through A and C as well as through B and D Point of intersection (on i) Lines through A and D as well as through B and C Point of intersection (on i)	m and n (brown) E p and q (brown) G	Parallel incident rays converge to a point in the focal plane. The two rays of light travelling through either A^{\prime} and C^{\prime} or B^{\prime} and D^{\prime} intersect at point E after refraction. The two rays that pass through A^{\prime} and D^{\prime} or B^{\prime} and C^{\prime} converge to the point G. As the images of the points lie on the refracted rays, it is possible to construct E and G from them (see Figure 2).
Circle with centre in F running through E and G	d (black)	The two parallel ray bundles that converge to E or G both hit the lense at an angle of 45°. As rays passing through the center of the lens are not refracted, $\angle G O E=90^{\circ}$ (see Figure 2). Consequently, O lies on the circle with diameter $\overline{E G}$.
Intersection of d and j (so that i separates O and the ellipse)	O	O is also located on the optical axis and can therefore be identified as the intersection of the optical axis (j) with the circle (d) lying to the left of the focal plane.

This gives $O=(-1.12358,-0.58132)$.

Figure 3: Constructions in Geo Gebra

