Problem 2 – Image of a circle

Lukas Schicht

Physics Cup 2024

Task

In the figure below, the ellipse is a real image of a circle created by an ideal thin lens. The point F is the closer-to-the-ellipse main focus of the lens. Optical axis lies in the plane of this figure. Construct geometrically the centre O of this thin lens.

Structure of this document

On the next page two sketches are shown that illustrate the imaging process. These are then used to motivate the procedure applied in Geo Gebra.

Sketches

Figure 1: Rays tangent to the circle are also tangent to the ellipse after refraction. Moreover, tangent lines to the circle are mapped to tangents to the ellipse.

Figure 2: Parallel incident rays converge to a point in the focal plane.

Procedure in Geo Gebra

In the following, the constructions carried out in Geo Gebra are described and it is explained with the help of the above sketches why the point O found in this way represents the centre of the thin lens.

Objects drawn in Geo Gebra	Designation	Physical motivation
Both tangents to the ellipse that	f and g	The two rays of light that originate tangen-
run through F	(orange)	tially from the circle at the points A' and B'
		and hit the lens perpendicularly run along the
Contact points of the tangent	A and B	orange straight lines drawn in Geo Gebra after
lines on the ellipse		refraction (see Figures 1 and 3).
Line through A and B	h (blue)	Just as the line $A'B'$ is perpendicular to the
		optical axis, so is $h = AB$. This makes it
Straight line parallel to h pass-	i (blue)	possible to draw the focal plane (i) and the
ing through F and		optical axis (j) .
Perpendicular line passing through	j (red)	
F		
Tangent lines to the ellipse that run	k and l	The images of the two straight lines that run
parallel to h	(green)	perpendicular to the optical axis and touch the
		circle at the points C' and D' are tangent lines
Contact points of the tangents	C and D	to the ellipse that are also perpendicular to the
on the ellipse		optical axis (see Figure 1).
Lines through A and C as well as	m and n	Parallel incident rays converge to a point in
through B and D	(brown)	the focal plane. The two rays of light travel-
		ling through either A' and C' or B' and D'
Point of intersection (on i)	$\mid E$	intersect at point E after refraction. The two
	_	rays that pass through A' and D' or B' and C'
Lines through A and D as well as	p and q	converge to the point G . As the images of the
through B and C	(brown)	points lie on the refracted rays, it is possible
		to construct E and G from them (see Figure
Point of intersection (on <i>i</i>)	G	2).
Circle with centre in F running	d (black)	The two parallel ray bundles that converge to
through E and G		E or G both hit the lense at an angle of 45° .
		As rays passing through the center of the lens
		are not refracted, $\angle GOE = 90^{\circ}$ (see Figure
		2). Consequently, O lies on the circle with
		diameter EG.
Intersection of d and j (so that i sep-	0	O is also located on the optical axis and can
arates O and the ellipse)		therefore be identified as the intersection of
		the optical axis (j) with the circle (d) lying to
		the left of the focal plane.

This gives O = (-1.12358, -0.58132).

Figure 3: Constructions in Geo Gebra