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Task

A water pipe of length L and of internal radius r runs under ground and is surrounded over its entire
length by soil at temperature T0. The specific heat of the soil is c, the density is ρ, and the heat
conductance is κ. The characteristics of the pipe walls are identical to those of the soil. A boiler
supplying water at a constant temperature T1 > T0 is attached to the inlet of the pipe, and at the
moment of time t = 0, a tap is opened at the outlet of the pipe. The water in pipe starts flowing
at a constant speed v. How long one has to wait for the water flowing out of the tap to become
warm if it is known that this waiting time is significantly bigger than L/v? We call water warm if its
temperature is higher than T1+T0

2 . Only an estimate of the answer is required: you need to provide the
correct functional dependence of the waiting time while estimating the magnitude of its parameters.
The specific heat of water is cw, and its density is ρw; the water flow in the pipe is turbulent so that
the water temperature can be assumed to be constant over a cross-section of the pipe.

Solution

Let us call the waiting time τ and let us define T1/2 =
T1+T0

2 . Our aim is to find the temperature of the
water Tw(l, t) as a function of the position in the pipe and time. We can then solve Tw(L, τ) = T1/2

for τ .

The temperature gradient of the water in the pipe determines how much heat is transferred to the soil
at a particular point l per length and time:

dQ̇
dl

(l, t) = −cwρwπr
2v · ∂Tw

∂l
(l, t). (1)

Here, πr2v is the volume of water flowing through the cross-section of the pipe per unit time. This heat
propagates through the soil, determined by the temperature gradient field. There are two transport
processes taking place simultaneously; heat is transferred radially and along the pipe.

The water and the surrounding soil/ the pipe wall are always in thermodynamic equilibrium, i.e. their
temperatures are the same. This means that the heat flux along the pipe also has an influence on
the temperature of the water. We therefore assume that at each point in time a quasi-stationary
equilibrium is established. Then no heat is transported longitudinally (anymore), and the temperature
distribution of the water in the pipe and of the soil in a region around the pipe does not change.
Thus, given the resulting temperature distribution Tw(l, t) of this equilibrium at time t, the heat that
is released by the water according to Equation (1) is transported radially only and used to warm up
the soil in the “next” region, thus enlarging the “first” one that surrounds the pipe and in which the
temperature remains constant (at least for short times in this equilibrium state).
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As the first hint suggests, the radius of the first region, call it R, grows diffusively, at the rate defined
by the heat conductivity, specific heat, and density of the soil. Dimensional analysis yields that this
rate is given by

dR
dt

=
Kκ

cρ
· 1
R
,

where K is a constant. The factor R−1 appears because it makes sense to assume that the rate at
which a volume of cold soil is heated up remains constant, i.e.

2πR · dR
dt

· dl = const · κdl
cρ

.

In order to simplify the problem, it is assumed that the radius of this first region is the same everywhere
along the pipe, depending only on time:

R(t) =

√
2Kκ

cρ
· t+ r2.

Moreover, in the first region surrounding the pipe, the heat that flows through the area 2πr̃dl should
be the same as the energy supplied by the water at each point l. Hence,

dQ̇
dl

= −2πr̃κ · ∂Ts

∂r
(r̃)

for all r̃ ∈ [r,R(t)] and at each position l and time t. Here, Ts denotes the temperature of the soil.
Taking into account the boundary condition Ts(r) = Tw, solving this equation yields the following
temperature distribution:

Ts(r̃) = Tw − 1

2πκ
· dQ̇

dl
· ln r̃

r
.

We assume here that the heat released per unit length is so small that Ts(R(t)) > T0 everywhere along
the pipe and at all relevant times t < τ . Since the total power supplied by the water is not greater
than Q̇ = cwρwπr

2v · (T1 − T0), this means that the pipe must be sufficiently long.

In order to enlarge the first region at the given rate, i.e. to heat the soil at radius R(t) up to temperature
Ts(R(t)), the following energy is needed per time and length dl:

2πR(t)Ṙ(t) · cρ · (Ts(R(t))− T0) = 2πKκ · (Ts(R(t))− T0) .

As this must be equal to dQ̇
dl , we obtain the following equation:

dQ̇
dl

(l, t) = 2πKκ ·

(
Tw(l, t)−

1

2πκ
· dQ̇

dl
(l, t) · ln

(√
2Kκ

cρr2
· t+ 1

)
− T0

)

= 2πKκ · (Tw(l, t)− T0)−
K

2
· dQ̇

dl
(l, t) · ln

(
2Kκ

cρr2
· t+ 1

)
Solving for dQ̇

dl and using Equation (1) gives the following relation:

2πKκ · (Tw(l, t)− T0)

1 + K
2 · ln

(
2Kκ
cρr2

· t+ 1
) = −cwρwπr

2v · ∂Tw

∂l
(l, t).

2



Since Tw(0, t) = T1, the solution of this equation is given by

Tw(l, t) = T0 + (T1 − T0) · exp

− 2Kκl

cwρwr2v ·
(
1 + K

2 · ln
(
2Kκ
cρr2

· t+ 1
))
. (2)

Hence, the temperature of the water inside the pipe decreases exponentially with l and the more time
passes, the smaller this decrease is. Furthermore, according to this model, right after the water in the
pipe starts flowing, the following temperature distribution arises:

Tw(l, 0) = T0 + (T1 − T0) · exp
(
− 2Kκl

cwρwr2v

)
.

This is consistent with the fact that the heat propagates much faster along the pipe than radially, as
the first hint also states.

It may occur that the temperature is already greater than T1/2 everywhere at the beginning, i.e. that
Tw(L, 0) > T1/2. This is the case if

2KκL

cwρwr2v
< ln 2.

Then, τ = 0. Otherwise, using Equation (2), we obtain the following estimate for the waiting time:

τ =
cρr2

2Kκ
·
[
exp

(
4κL

ln 2 · cwρwr2v
− 2

K

)
− 1

]
.
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