
2nd March 2025 Physics Cup 2025 Ilan Mihelja, Ivan Hegedić

Problem 5 - Solution

Hodograph solution

The hodograph of the satellite’s elliptical orbit is a circle. The
orbit’s eccentricity vector is conserved:

e =
p× L
GMm2

− r̂ =
v× L
GMm

− r̂

Proof. Deriving the first term with respect to time:

d

dt
(p× L) = dp

dt
× L+ p× dL

dt
= F× L

The second term vanishes because the gravitational force is a
central force, i.e. its torque is identically zero.

F× (r× p) = m

[(
F · dr

dt

)
r− (F · r) dr

dt

]
Upon expressing the gravitational force vector as follows:

F = −GMm

r2
r̂ = −GMm

r3
r

Note that r · dr
dt = 1

2
d
dt (r

2) = 1
2

d
dt (r

2) = r dr
dt ; hence:

d

dt

(
p× L

GMm2

)
= −

[
1

r3

(
r · dr

dt

)
r− 1

r

dr

dt

]
=

= − 1

r2
dr

dt
r+

1

r

dr

dt
=

d

dt

(r
r

)
=

d

dt
(r̂)

Notice that the obtained derivative is equal to the one being
subtracted in the defined eccentricity vector, therefore:

de

dt
=

d

dt
(r̂− r̂) = 0 □

We express r̂ from the expression of e and take its dot
product with itself to obtain an equation of a circle.

r̂ · r̂ =

(
v× L
GMm

− e

)
·
(
v× L
GMm

− e

)
=

=
v2L2

(GMm)2
− 2

(
v× L
GMm

)
· e+ e2

Let the x-axis lie along the ellipse’s major axis, and the z-axis
normal to the orbital plane. Observe the middle term:

(v× L) · e = −(v× e) · L

∴ v2x +

(
vy −

GMme

L

)2

=

(
GMm

L

)2

We easily identify the circle’s radius as R = GMm/L and its
centre as S(0, GMme/L). We introduce the quantity called
offset as the distance from the origin and the circle’s centre
S such that d = |OS| = GMme/L. Note that d = eR.
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Figure 1: Satellite’s hodograph.

Consider the triangle formed by the given velocities. We may
calculate its surface area in two manners:

S△ABC =
(v1 + v3)

√
v21 + v22

√
v22 + v23

4R
=

(v1 + v3)v2
2

∴ R =

√
v21 + v22

√
v22 + v23

2v2
(1)

Applying the intersecting chord theorem (proof below) on the
chord going through O parallel to velocities v1 and v3:

v1v3 = (R+ d)(R− d) =⇒ e2 =
d2

R2
= 1− v1v3

R2
(2)

Upon inserting equation (1) into equation (2), we find the
final answer for the orbit’s eccentricity:

e =

√
1− 4v1v3v22

(v21 + v22)(v
2
2 + v23)

In the given special case v1 = 1km/s, v2 = 2km/s, v3 =
3km/s, the eccentricity numerically evaluates to:

e =

√
17

65

Proof. Intersecting chords theorem. Using points A, B
and C from figure 1 without loss of generality, we draw point
D as the intersection of line BO with the circle. Consider the
angles of triangles △AOD and △BOC:

|∠ADO| = |∠BCO| (inscribed angles over AB)

|∠DAO| = |∠CBO| (inscribed angles over CD)

|∠AOD| = |∠BOC| (opposing angles)

∴ △AOD ∼ △BOC

|AO|
|OD|

=
|BO|
|OC|

⇐⇒ |AO| · |OC| = |BO| · |OD| □
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Alternative solution

We find the relation between the angles of true anomaly θ
and the eccentric anomaly ϕ measured from the major axis.
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Figure 2: Satellite’s elliptical orbit.

For a point P on the orbit whose projection onto the ma-
jor axis of an orbit with centre O is V , |OV | = a cosϕ. Let F
be the ellipse’s focus, so |OV | = |OF | + |FV | = ae + r cos θ.
Combining the latter with the formula for the orbital radius:

r =
a(1− e2)

1− cos θ
=⇒ cos θ =

cosϕ− e

1− e cosϕ

Proof. Orbital radius formula. We express the dot prod-
uct of the satellite’s angular momentum with itself using the
previously discussed eccentricity vector:

L2 = L · (r× p) = r · (p× L) = GMm2r(1 + e cos θ)

∴ r =
L2

GMm2

1

1 + e cos θ

We take the dot product of the eccentricity vector with itself:

e2 =
p2L2

(GMm2)
2 + 1 =

2mEL2

(GMm2)2
+ 1 = − L2

GMm2a
+ 1

∴
L2

GMm2
= a(1− e2)

The vis-viva equation with the eccentric anomaly ϕ as its
argument then becomes:

v2 =
2GM

a

1 + e cosϕ

1− e cosϕ

Notice that point C is centrally-symmetric to A with respect
to the centre O because vA ∥ vB ; hence, ϕC = π + ϕA:

v2A =
2GM

a

1 + e cosϕA

1− e cosϕA
and v2C =

2GM

a

1 + e cosϕC

1− e cosϕC
=

=
2GM

a

1− e cosϕA

1 + e cosϕA
=⇒ vA

vC
=

1 + e cosϕA

1− e cosϕA

We find cosϕA from the last expression, and express cotϕA

(for reasons yet to be revealed) to find:

cosϕA =
1

e

vA − vC
vA + vC

=⇒ cotϕA = ± 1√
e2

(
vA+vC
vA−vC

)2

− 1

Computing vA/vB while recognising vA/vC to find tanϕB :(
vA
vB

)2

=

1+e cosϕA

1−e cosϕA

1+e cosϕB

1−e cosϕB

=⇒ cosϕB =
1

e

v2B − vAvC
v2B + vAvC

tanϕB = ±

√
e2

(
v2B + vAvC
v2B − vAvC

)2

− 1

For an ellipse given by x2/a2 + y2/b2 = 1, the slope of the
tangent at a given point P (a cosϕ, b sinϕ) is:

d

dx

(
x2

a2
+

y2

b2

)
= 0 =⇒ kP =

dy

dx

∣∣∣∣∣
P

= −x

y

b2

a2
= − b

a
cotϕ

From b/a =
√
1− e2 and the given condition that vA ⊥ vB ,

i.e. the tangents drawn at points A and B are perpendicular:

kAkB = −1 =⇒ (1− e2) cotϕA cotϕB = −1

∴ tanϕB = −(1− e2) cotϕA

It is now clear why we searched for cotϕA and tanϕB , but we
have to be careful to choose their appropriate sign. Since vA

and vB are perpendicular, one of their slopes must be nega-
tive, so we choose one of the two co-tangents to be negative:√

e2
(
v2B + vAvC
v2B − vAvC

)2

− 1 =
1− e2√

e2
(

vA+vC
vA−vC

)2

− 1

It is now only a matter of algebra to find an explicit expression
for the orbit’s eccentricity. When simplifying the equations,
one has to pay close attention to the positive/negative signs
under the roots. After all algebraic work, we finally arrive at
the following explicit expression for the orbit’s eccentricity:

e =

√√√√√√
(

vA+vC
vA−vC

)2

+
(

v2
B+vAvC

v2
B−vAvC

)2

− 2(
vA+vC
vA−vC

· v2
B+vAvC

v2
B−vAvC

)2

− 1

Upon plugging the given values of vA = 1km/s, vB = 2km/s
and vC = 3km/s, we confirm the answer in our previous so-
lution:

e =

√
17

65


