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Problem 5 - Solution

Hodograph solution

The hodograph of the satellite’s elliptical orbit is a circle. The
orbit’s eccentricity vector is conserved:
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Proof. Deriving the first term with respect to time:
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The second term vanishes because the gravitational force is a
central force, i.e. its torque is identically zero.
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Upon expressing the gravitational force vector as follows:
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Notice that the obtained derivative is equal to the one being
subtracted in the defined eccentricity vector, therefore:
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We express T from the expression of e and take its dot
product with itself to obtain an equation of a circle.
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Let the z-axis lie along the ellipse’s major axis, and the z-axis
normal to the orbital plane. Observe the middle term:
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We easily identify the circle’s radius as R = GMm/L and its
centre as S(0, GMme/L). We introduce the quantity called

offset as the distance from the origin and the circle’s centre
S such that d = |OS| = GMme/L. Note that d = eR.
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Figure 1: Satellite’s hodograph.

Consider the triangle formed by the given velocities. We may
calculate its surface area in two manners:
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Applying the intersecting chord theorem (proof below) on the
chord going through O parallel to velocities v; and wvs:
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Upon inserting equation (1) into equation (2), we find the
final answer for the orbit’s eccentricity:
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In the given special case v; = 1km/s, vo = 2km/s, v3 =
3km/s, the eccentricity numerically evaluates to:
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Proof. Intersecting chords theorem. Using points A, B
and C from figure 1 without loss of generality, we draw point
D as the intersection of line BO with the circle. Consider the
angles of triangles AAOD and ABOC:

|/ADO| = |/BCO| (inscribed angles over AB)

|£DAO| = |£CBO)|
|ZAOD| = |£BOC|
AAOD ~ ABOC

(inscribed angles over C'D)

(opposing angles)

|AO|  |BO)|

= AO|-|l0C|=|BO|-|OD| 0O
0D] = [o¢] < 14011001 = B0l |0D]
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Alternative solution

We find the relation between the angles of true anomaly 6
and the eccentric anomaly ¢ measured from the major axis.
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Figure 2: Satellite’s elliptical orbit.

For a point P on the orbit whose projection onto the ma-
jor axis of an orbit with centre O is V, |OV| = acos ¢. Let F
be the ellipse’s focus, so |OV| = |OF| + |FV| = ae + r cosf.
Combining the latter with the formula for the orbital radius:
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Proof. Orbital radius formula. We express the dot prod-
uct of the satellite’s angular momentum with itself using the
previously discussed eccentricity vector:
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We take the dot product of the eccentricity vector with itself:
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The vis-viva equation with the eccentric anomaly ¢ as its
argument then becomes:
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Notice that point C' is centrally-symmetric to A with respect
to the centre O because v4 || vp; hence, p¢ = 7 + da:
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We find cos ¢4 from the last expression, and express cot ¢ 4
(for reasons yet to be revealed) to find:

lvg—w 1
cos(bA:fu — cotopy ==+ =
Ve (se) 1

eva+vo

Computing v /vp while recognising v /ve to find tan ¢p:
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For an ellipse given by 2%/a® + y?/b®> = 1, the slope of the
tangent at a given point P(a cos ¢, bsin ¢) is:
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From b/a = v/1 — e? and the given condition that v4 L vp,
i.e. the tangents drawn at points A and B are perpendicular:
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It is now clear why we searched for cot ¢ 4 and tan ¢, but we
have to be careful to choose their appropriate sign. Since v 4
and vpg are perpendicular, one of their slopes must be nega-
tive, so we choose one of the two co-tangents to be negative:
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It is now only a matter of algebra to find an explicit expression
for the orbit’s eccentricity. When simplifying the equations,
one has to pay close attention to the positive/negative signs
under the roots. After all algebraic work, we finally arrive at
the following explicit expression for the orbit’s eccentricity:
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Upon plugging the given values of v4 = 1km/s, vg = 2km/s
and ve = 3km/s, we confirm the answer in our previous so-
lution:
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