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Mikhail Lazarev

The 4th of March 2024

1 Condition

A satellite orbits a planet. At point A, its speed is v1. At point B, its speed is vy and its velocity vector forms a right angle
with the velocity vector at point A At point C, the velocity is exactly opposite to the velocity at point A, with a magnitude
of vs. Find the eccentricity of the orbit. Also determine the exact numerical value of the eccentricity when vy = 1 kmn/s,
vy =2 km/s u vg = 3 km/s.

2 Solution

First, let’s draw a velocity hodograph and plot the velocities from the condition.

Let’s also recall the well-known fact that it is a circle the proof of this can be found A
at the end of the solution.) and that all velocities come from a point shifted relative

to the center.

Define the radius of the circle. To do this, calculate the lengths of the sides and
the area of the triangle ABC.

AB =\/v?+v3; BC=\/vi+0v3; AB=uv;+vs.
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To do this, consider the triangle ABC and recall the following formula for the radius. c
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Now let’s recall one interesting fact about the intersection of chords. If the XY chord intersects with the ZW chord at point
O, then the following equality is true: XO -YO = ZO - WO. Let’s take advantage of this fact and equate vy - v3 = vq - vp,
where v, this is the apocentric velocity, and v, is the pericentric velocity.
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Recall that the radius of the circle of the hodograph is expressed by the following formula (where p is the focal parameter of
the orbit):
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Substituting the numerical values from the problem, we get:
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3 Proof of the hodograph

To begin with, it’s worth talking about such a thing as a velocity hodograph. This is the geometric location of the ends of
the velocity vectors in our case of the satellite. To begin with, we will prove that for circular and elliptical orbits it will be
a circle.

First, let’s prove Kepler’s second law. If the interaction force is central, then the angular momentum relative to the center
of force remains constant.
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The angular momentum module
L = mwv, r = const.

Then in a short time dt the body «sweepss» the area
1
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Note thatr r - v; = const, then in equal time intervals, the body sweeps an equal area.

Let’s divide the ellipse trajectory into small sections with the same angular magnitude da and calculate the change in the
velocity vector in these sections. Let’s write down Newton’s second law
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Here dt — the time it takes for a body to pass a sector, dv — speed vector change over time dt.The force is determined by
the law of universal gravitation
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Where R is the distance from the center of force to the body, and & is a constant coefficient in magnitude, depending on the
masses of the body and the planet, directed toward the center of force. The time dt is determined by the area swept out:
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We have shown that when the radius vector rotates through equal small angles da, the velocity of the body changes by the
same amount. Note that the direction of d' also rotates by the angle da. Therefore, the velocity hodograph is a circle (see
the figure).

We will also calculate the radius. This can be done by taking the arithmetic mean of the geocentric velocity and the recentric
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