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1 Introduction

This solution uses the fact that the hodograph for the satellite is a a circle as the gravitation force has
a radial symmetry and follows an inverse-square-law with respect to do the distance. Before we use
this fact we want to proof it. Afterwards we will show how this hodograph leads to a short solution.

2 Lemmas

For our purpose we need three intermediate results. First, we need to show eccentricity vector is con-
served. It is proportional to the LRL-vector (Laplace-Runge-Lenz). Second, that this vector indeed
has the eccentricity as an absolute value. And third, from the eccentricity vector we can derive the
shape of the hodograph.
All of these proofs are already well-known so there is no need to reinvent them. Instead, I want to
point out that both Wikipedia (Laplace–Runge–Lenz-vector) and last years Physicscup (PC2024-P4
Best solutions and final results) show nice proofs, for the LRL-vector there are even numerous ways.
Still, we for completeness we want to proof all necessary intermediate results here.

2.1 Lemma 1: Conservation of eccentricity vector

The eccentricity vector is defined as ε⃗ = A⃗
mk = p⃗×L⃗

mk − r̂. Its time derivative vanishes:
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with k = GMm and the angular momentum L⃗ being a conserved quantity.

2.2 Lemma 2: The absolute value of |ε⃗|
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which is indeed the square of the eccentricity. Here, we used the scalar triple product r⃗ ·
(
p⃗× L⃗

)
=

(r⃗ × p⃗) · L⃗ = L⃗ · L⃗ = L2 and the fact that the angular moment is perpendicular to the plane of motion.

2.3 Lemma 3: Hodograph is a circle

We already know that the LRL-vector is conserved. We can rewrite it and the take the dot product
of itself:

mkr̂ = p⃗× L⃗− A⃗ ⇒ m2k2 =
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)2
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by again using the scalar triple product rule. Without loss of generality (w.l.o.g.) we can choose L⃗

along the z-axis and the major semiaxis along the x-axis:
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This equation is called the locus equation.

3 Solution

Now we want to efficiently use these facts. First, we observe that the hodograph is a circle with radius
mk
L =: Rp and the center of the circle has coordinates (pxM ,pyM ) = (0, A

L ) so the length of the vector
is pM = pyM = A

L . So the eccentricity is simply ε = |ε⃗| =
∣∣∣ A⃗

mk

∣∣∣= A
mk = pM

Rp
.

Next from the text the three velocities v1,v2,v3 are given and in addition we know that v⃗1 ⊥ v⃗2 ⊥ v⃗3. It
is not a problem that only the velocities and not the momenta are given as we are not even interested
in the values of pM and Rp but only the ratio and so the mass cancels out. Also, as all the velocities
are perpedicular to the angular momentum (also conserved) they all lie in the plane of motion. We
want to use the geometric connections between the momenta p1,p2,p3 to relate them to pM and Rp.

Lets draw a sketch of the hodograph. For the sketch,
we choose some arbitrary point A on the circle and then
constructed B and C accordingly. The center of the coor-
dinate system is denoted by O and the center of the circle
is M . Now we want to relate |CO| = p3 and |BO| = p2 to
|AO| = p1 and we do this via the law of cosines.
Because point C and A must be opposite in the hodograph
O lies on the line AC and therefore ∠MAO = ∠MAC

holds. We apply the law of cosines to the triangles △AOM
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and △ACM :
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Next, we use a similar approach to connect p1 to p2 here using the law of cosines for the triangles
△OMB and △AOM . To figure out the angle ∠BOM we use the fact that ∠BOM = ∠AOM −
∠AOB = ∠AOM −90◦ holds:
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At this point we can calculate pM and thereby also Rp which is sufficient to finally obtain the result
for the eccentricity:
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In all the calculations we used the assumption that the orbit is an ellipse so the satellite is bounded to
its planet. Without this assumption the point would lie outside of the hodograph. Fortunately, this
assumption must be true. It is stated in the text that "the velocity is exactly opposite to the velocity
at point A" which means that the line AC must contain point O which is only possible for the case of
an ellipse (ε < 1) which also explains why the root is always well defined.
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