2025 Physics Cup Problem 5 Solution

OWEN ZHOU

March 2, 2024

§1 Solution

We will make use of the conserved eccentricity vector¹

$$\mathbf{e} = \frac{\mathbf{p} \times \mathbf{L}}{GMm^2} - \hat{\mathbf{r}} \implies \mathbf{v} \times \mathbf{L} = GMm(\mathbf{e} + \hat{\mathbf{r}})$$

Note that **L** is always perpendicular to the orbit plane so $|\mathbf{v} \times \mathbf{L}| = |\mathbf{v}| |\mathbf{L}|$, so

$$k := \frac{|\mathbf{e} + \hat{\mathbf{r}}_{\mathbf{A}}|}{v_1} = \frac{|\mathbf{e} + \hat{\mathbf{r}}_{\mathbf{B}}|}{v_2} = \frac{|\mathbf{e} + \hat{\mathbf{r}}_{\mathbf{C}}|}{v_3}$$
(1)

Also, for the pair of positions A and B, since $\mathbf{v_A} \perp \mathbf{v_B}$, we have $\mathbf{e} + \mathbf{\hat{r}_A} \perp \mathbf{e} + \mathbf{\hat{r}_B}$. Similarly, for positions A and C, we have that $\mathbf{e} + \mathbf{\hat{r}_A}$ points opposite to $\mathbf{e} + \mathbf{\hat{r}_C}$ which also implies that $\mathbf{e} + \mathbf{\hat{r}_C} \perp \mathbf{e} + \mathbf{\hat{r}_B}$.

¹A proof of the conservation of **e** will be in the remarks.

Now, we graph these vectors (refer to diagram on last page). Let E = (0,0) and $\overrightarrow{EO} = \mathbf{e}$. Point A represents $\mathbf{e} + \hat{\mathbf{r}}_{\mathbf{A}}$ so $OA = |\hat{\mathbf{r}}_{\mathbf{A}}| = 1$. Since similar holds for B and C, we have A,B, and C lying on the circle of radius 1 centered at O. Lastly, from equation 1, we have $EA = kv_1$, $EB = kv_2$, and $EC = kv_3$. To finish, we just use some Euclidean geometry.

Power of a point on E tells us

$$k^2 v_1 v_3 = k v_2 (k v_2 + 2d) = 1 - e^2$$

Pythagorean theorem says

$$d^2 = e^2 - \frac{k^2(v_1 - v_3)^2}{4}$$

The first equation yields $2v_2d = k(v_1v_3 - v_2^2)$ so

$$k^{2}(v_{2}^{2} - v_{1}v_{3})^{2} = 4v_{2}^{2}d^{2}$$

$$= 4v_{2}^{2} \left(e^{2} - \frac{k^{2}(v_{1} - v_{3})^{2}}{4}\right)$$

$$= 4v_{2}^{2}(1 - k^{2}v_{1}v_{3}) - v_{2}^{2}k^{2}(v_{1} - v_{3})^{2}$$

$$= 4v_{2}^{2} - 2k^{2}v_{1}v_{2}^{2}v_{3} - k^{2}v_{1}^{2}v_{2}^{2} - k^{2}v_{2}^{2}v_{3}^{2}$$

$$\implies k^{2}v_{2}^{4} + k^{2}v_{1}^{2}v_{3}^{2} = 4v_{2}^{2} - k^{2}v_{1}^{2}v_{2}^{2} - k^{2}v_{2}^{2}v_{3}^{2}$$

$$\implies k^{2} = \frac{4v_{2}^{2}}{v_{2}^{4} + v_{1}^{2}v_{2}^{2} + v_{2}^{2}v_{3}^{2} + v_{3}^{2}v_{1}^{2}}$$

Since $e = \sqrt{1 - k^2 v_1 v_3}$,

$$e = \sqrt{1 - \frac{4v_1v_2^2v_3}{v_2^4 + v_1^2v_2^2 + v_2^2v_3^2 + v_3^2v_1^2}} = \sqrt{\frac{17}{65}}$$

for the given values.

Remark. Conservation of e holds since

$$\frac{\mathrm{d}\mathbf{e}}{\mathrm{d}t} = \frac{1}{GMm^2} \left(\mathbf{F} \times \mathbf{L} \right) - \frac{\mathrm{d}\mathbf{\hat{r}}}{\mathrm{d}t} = -\dot{\theta} \left(\mathbf{\hat{r}} \times \mathbf{\hat{z}} \right) - \left(\dot{\theta} \mathbf{\hat{z}} \times \mathbf{\hat{r}} \right) = 0$$