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1 Problem 5: Satellite Orbit

A satellite orbits a planet. At point A, its speed is v1. At point B, its speed is v2 and its velocity vector forms a right angle
with the velocity vector at point A. At point C, the velocity is exactly opposite to the velocity at point A, with a magnitude of
v3. Find the eccentricity of the orbit. Also, determine the exact numerical value of the eccentricity when v1 = 1 km/s, v2 = 2
km/s, and v3 = 3 km/s.

2 Facts

In this section, I will enunciate some useful geometrical facts about an elliptical orbit. Some proofs are left in the appendix
section. To start with, consider an ellipse Γ with major axis a and minor axis b and focal points F1 and F2. Set c =

√
a2 − b2

and O as the center of Γ.

Fact 1. If P is a point on Γ and Q and R are points on the tangent to Γ at P such that P ∈ QR, then:

• 2a = F1P + F2P

• ∠F1PQ = ∠F2PR

In simple terms: The total distance from any point on the ellipse to its two focal points adds up to 2a. Also, if a ray comes
from one focus, hits the tangent at the point P , it will bounce off at the same angle and head towards the other focus.

Fact 2. Given a tangent line l1 to Γ at P1, there exist a unique different tangent line l2 at P2 such that l1 ∥ l2. In addition,
P1P2 has O as midpoint.

Fact 3. The geometrical locus of all points P such that its tangents to Γ are perpendicular, it’s a circumference Ω of radius
R =

√
a2 + b2 center at the center of Γ.

3 Conservation laws

The first conservation law is energy conservation, from one focus:

E = −GMm

2a
=

1

2
mv2 − GMm

r

v2 = GM

(
2

r
− 1

a

)
(1)

To find an expression for the angular momentum is trickier. Consider the minimum and maximum distances to the planet
d1 = a− c and d2 = a+ c with speeds u1 and u2 respectively. From here, the angular momentum density, h, is preserved, from
which we can write the speed as u = h/d. Replacing this into the difference given by equation (1), we arrive at:

h2

(
1

d21
− 1

d22

)
= 2GM

(
1

d1
− 1

d2

)
⇒ h2 = 2GM

d1d2
d1 + d2

Using d1d2 = (a+ c)(a− c) = a2 − c2 = b2 and Fact 1, it is clear that our conserved quantity is:

h2 = GM
b2

a
(2)
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4 Geometrical trick

By Fact 2 and Fact 3, the points A, B, C, and D are constructed in such a way that their tangents intersect at points P , Q, P ′,
and Q′ as shown in Figure 1, forming the rectangle PQP ′Q′. Let the angles formed by the tangent lines and the radial vectors
from F1 at A and B be ϕ and β, respectively. By using Fact 1 and Fact 2, we can find the other angles shown in Figure 1.

Figure 1: Geometrical construction

By using Fact 2, CA and F1F2 have O as a midpoint, which makes CF2AF1 a parallelogram, from which the following relations
come: 1

rA + rC = rB + rD = 2a (3)

From this figure, it is clear that the diameter can be found as:

(rA sinϕ+ rC sinϕ)2 + (rB sin θ + rD sin θ)2 = 4R2 = 4(a2 + b2)

2 Using (3)

sin θ2 + sinϕ2 = 1 +

(
b

a

)2

(4)

5 Orbital Parameters

From equations (3) and the conservation of, h = v1rA sinϕ = v3rC sinϕ it follows immediately that:

rA = 2a
v3

v1 + v3
(5)

On the other hand, from energy conservation we can find the parameters GM as follows:

GM =
v21(

2

rA
− 1

a

) =
v21a(

v1 + v3
v3

− 1

) ⇒ GM = av1v3

Applying energy conservation to B,

v22 = av1v3

(
2

rB
− 1

a

)
rB = 2a

v1v3
v22 + v1v3

(6)

1The same argument can be taken for B and D.
2Fact 3 was used.
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By using the equation (2) for the conservation of angular momentum density, h = v1rA sin θ = v2rB sinϕ, and replacing (5) and
(6) we arrive to:

sin θ =

(
v22 + v1v3
v2(v1 + v3)

)
sinϕ (7)

Finally, the conservation of h2 given by (2) and GM = av1v3 lead us to,

v1v3b
2 = (v1rA sinϕ)2

from (5) we finally arrive to,

sinϕ2 =
(v1 + v3)

2

4v1v3

(
b

a

)2

(8)

6 Finding the eccentricity

We have all pieces set up to get e2 = 1− b2/a2. Therefore, replacing (7), (8) into (4),

2− e2 =

(
(v1 + v3)

2

4v1v3

)[
1 +

(
v22 + v1v3
v2(v1 + v3)

)2
]
(1− e2)

For our sanity, the simplified expression is the following,

e =

√
v22(v

2
1 + v22 + v23) + v21v

2
3 − 4v1v3v

2
2

v22(v
2
1 + v22 + v23) + v21v

2
3

Replacing the particular case in which v1 = 1 Km/s, v2 = 2 Km/s, and v3 = 3 Km/s, we obtain:

ep =

√
17

65
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Appendix: Proofs of the Facts

Assume for all the proofs that the point O is at the origin:

Fact 1: This is a well known fact regarding ellipses. For a complete proof, please look at it on the web.

Lemma 1. The tangent line at point P (x0, y0) has a parametric equation:

x0x

a2
+

y0y

b2
= 1.

Proof. By deriving the ellipse equation, we can obtain:

2x

a2
+

2y

b2
dy

dx
= 0.

This gives the slope of the tangent at P (x0, y0):
dy

dx

∣∣∣
(x0,y0)

= − b2x0

a2y0
.

Therefore, the equation of the tangent line in point-slope form is:

y − y0 = − b2x0

a2y0
(x− x0).

From where it follows immediately that:
x0x

a2
+

y0y

b2
=

x2
0

a2
+

y20
b2

= 1.

Fact 2:

Proof. Let P1(x1, y1) and P2(x2, y2) be points on the ellipse where the tangents l1 and l2 meet. By Lemma 1, their tangent
equations are:

x1x

a2
+

y1y

b2
= 1 and

x2x

a2
+

y2y

b2
= 1.

For l1 and l2 to be parallel, their slopes must be equal. Which means that,

− b2x1

a2y1
= − b2x2

a2y2
=⇒ x1

y1
=

x2

y2
.

The last equations mean that the tangents of its radial vector from the origin are equal, that is, fixing P1 our other tangent
point is of the form (y2, x2) = k(x1, y1). These equations only satisfy the ellipse equation if |k| = 1. From this, the uniqueness
of P2 (k = −1) follows immediately. In addition, it is trivial to see that for k = −1, O is the midpoint of P1P2.

Fact 3:
The proof is certainly not mine; you can find a derivation here. But for the sake of completeness, here it is:

Proof. The equation of the tangent at a point (u, v) on the ellipse is:

u

a2
x+

v

b2
y = 1.

Solving for y, we obtain: 3

y = − b2u

a2v
x+

b2

v
.

Using the abbreviations:

m = − b2u

a2v
, n =

b2

v
,

from the ellipse equation:
u2

a2
= 1− v2

b2
= 1− b2

n2
,

3Here, it’s assumed the tangent is non-vertical.
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we get:

m2 =
b4u2

a4v2
=

1

a2
b4

v2
u2

a2
=

1

a2
n2

(
1− b2

n2

)
=

n2 − b2

a2
.

Hence:
n = ±

√
m2a2 + b2 ⇒ y = mx±

√
m2a2 + b2.

Solving for (u, v), we obtain the parametric representation:

(u, v) =

(
− ma2

±
√
m2a2 + b2

,
b2

±
√
m2a2 + b2

)
.

For a tangent passing through (x0, y0), we have:

y0 = mx0 ±
√

m2a2 + b2.

Eliminating the square root leads to:

m2 − 2x0y0
x2
0 − a2

m+
y20 − b2

x2
0 − a2

= 0.

which has two solutions m1,m2 corresponding to the two tangents passing through (x0, y0). Hence, if the tangents meet at
(x0, y0) orthogonally, the following equations hold:4

m1m2 = −1 =
y20 − b2

x2
0 − a2

.

Rearranging, we obtain:
x2
0 + y20 = a2 + b2.

Which describes a circle centered at the origin with radius R =
√
a2 + b2.

4Given a quadratic equation x2 + bx+ c = 0 with roots x1 and x2, it is a well-known fact that x1x2 = c.
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