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1 Outline of the solution

Initially, some non-null Lorentz force acts on the charges inside the metal ball as it starts to rotate which causes currents
j = σv × B = σ(ω × r) × B to flow in the ball’s interior. Due to Joule’s law, the currents come to a halt, and a
time-independent charge distribution arises, in turn causing the fields produced by the rotating ball to reach a steady
state. As the rotating ball is in a steady state and there are no driving electromotive forces, there shouldn’t be any
relative motion between the charges and the ball, i.e. for any charge the total force is zero:

F = q (Ein + (ω × r)×B) = 0 (1)

By solving Laplace’s equation we will find the electrostatic potential everywhere in space, with which we can then easily
calculate the generated electric field outside of the ball, denoted by Eout. Once we find the field, we will simply use the
given assumption L ≫ R, treat the non-rotating ball as if it were in a uniform external electric field, and calculate its
induced dipole moment. Finally, we calculate the interaction force by using:

Finteraction = (p · ∇)Eout (2)

2 Electric field inside of the rotating ball

Using equation (1) we find the electric field generated inside of the ball choosing the spherical coordinates and B and ω
to point in the ẑ direction:

Ein = B× (ω × r) = ω(B · r)− r(B · ω) = −Bωr(sin2(θ) r̂+ sin(θ) cos(θ) θ̂) (3)

Due to all fields being time-independent, i.e. ∇× Ein = ∂B
∂t = 0, we may express Ein as a gradient of a scalar potential

field φin:
∂φin

∂r
= Bωr sin2(θ)

1

r

∂φin

∂θ
= Bωr sin(θ) cos(θ) (4)

The following solution is easily verified: φin(r, θ) =
1
2Bωr2 sin2(θ) + C where C is a constant to be determined.

3 Electric field outside of the rotating ball

Let’s now find the potential outside of the ball, denoted by φout. As there is no charge outside of the ball, the potential
outside satisfies Laplace’s equation: ∇2φout = 0, i.e. we can expand the potential as a series in spherical harmonics which
degenerate into Legendre polynomials with argument cos(θ) due to axial symmetry about the z-axis. Keeping in mind
that the potential must not diverge at infinity, we can write down its expansion:

φout (r, θ) =

∞∑
l=0

Alr
−1−lPl(cos(θ)) (5)

The potential is a continuous function at the boundary (r = R) of the ball, thus:

∞∑
l=0

AlR
−1−lPl(cos(θ)) =

1

2
BωR2 sin2(θ) + C =

1

2
BωR2

(
1− cos2(θ)

)
+ C (6)

Evidently ∀l /∈ {0, 2}, Al = 0 (orthogonality of Legendre polynomials), along with P0(x) = 1 and P2(x) =
3x2−1

2 , we are
left with a much simpler equation:

A0

R
+

A2

R3

3 cos2(θ)− 1

2
=

1

2
BωR2

(
1− cos2(θ)

)
+ C (7)
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This equation must be satisfied for all theta, which means that:

A0

R
− A2

2R3
=

1

2
BωR2 + C

3A2

2R3
= −1

2
BωR2

(8)

The solutions for A0 and A2 in the system (8) are the following:

A0 = CR+
1

3
BωR3 A2 = −1

3
BωR5 (9)

Thus, the potential outside of the ball is given by:

φout (r, θ) =

(
CR+

1

3
BωR2

)
1

r
− BωR5

3r3
3 cos2(θ)− 1

2
(10)

The monopole term in the potential vanishes because the net charge of the ball is zero, i.e. C + 1
3BωR2 = 0, therefore

the field outside is equivalent to that of a quadrupole:

φout = −1

3
BωR5 3 cos

2(θ)− 1

2r3
(11)

Now, the field is simply Eout = −∇φout:

Eout(r, θ) = −BωR5

r4

(
3 cos2(θ)− 1

2
r̂+ sin (θ) cos (θ)θ̂

)
(12)

On the z-axis, where the other ball is located (θ = 0), the field is simply given by

Eout(z) = −BωR5

z4
ẑ (13)

4 Induced dipole moment of the other, non-rotating ball

Let’s consider a metal ball of radius R in a uniform external electric field Eext. Due to the ball being conductive, a
charge distribution on the surface will form such that the newly produced electric field inside cancels the external one,
i.e. Ein = −Eext. Let’s consider a superposition of two charged spheres of the same radius R with charge densities ρ
and −ρ respectively, but whose centres are separated by a distance x such that a point inside the original ball at r is at
distances r+ = r− x

2 and r− = r+ x
2 away from the superposed spheres’ centres. From Gauss’ law:

4πε0r
2
±E± = ±4

3
πr ±3 ρ =⇒ E±(r) = ±ρr±

3ε0
(14)

Upon superposing the two spheres, we find that the electric field produced is uniform, and according to the uniqueness
theorem, this superposition corresponds exactly to the original induced charge distribution on the ball:

Ein = E+ +E− =
ρ

3
(r+ − r−) =

ρ

3ε0
(R− x

2
−R− x

2
) = − ρx

3ε0
= −Eext (15)

From the definition of polarisation P = ρx, we conclude P = 3ε0Eext. The total dipole moment is therefore :

p =
4

3
πR3P = 4πε0R

3Eext (16)

5 Interaction force between the balls

We derived the rotating ball’s outside field and the stationary ball’s induced dipole moment. Now we plug the values
into the equation (2) and get the final answer for the modulus of the interaction force:

F (z) = p
∂Eout

∂z
= 4πε0R

3

(
−BωR5

z4

)
∂

∂z

(
−BωR5

z4

)
= −16πε0R

4B2ω2

(
R

z

)9

F = 16πε0R
4B2ω2

(
R

L

)9

(17)
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Appendix

In our solution, we assumed the additional magnetic field created by the steady-state charge distribution to be negligible.
We can calculate both the volume and surface charge density of the rotating ball. The volume charge density can be
easily calculated using ρ = ε0∇ ·Ein = −2ε0Bω, while we find the surface charge density via:

σ(θ) = −ε0

(
∂φout

∂r
− ∂φin

∂r

)∣∣∣∣∣
r=R

= ε0BωR
3− 5 cos2 (θ)

2

Using these charge densities and their constant angular speed ω, we could calculate the magnetic field produced using

the Biot-Savart law. However, we can immediately see that the B field would be proportional to µ0ε0ω
2R2 = ω2R2

c2 which
is completely negligible for all reasonable values of R and ω. We can conclude that our initial assumption was valid.

We should also discuss the other given strong inequality, R ≪
√
ρ/µω. The term on the right side of the inequality

is identical to that of the skin depth of the conductor, with ω being the angular speed of the conductor instead of the
regular alternating current frequency. As the skin depth is much greater than the characteristic size of the conductor, we
can conclude that the magnetic field will indeed penetrate throughout the whole conductor and cause the eddy currents
to flow at the beginning of the motion. The formation of eddy currents eventually leads to the described steady state.

Hereby we disregarded the attribution of the centripetal force that drives the charges’ motion. Let’s make a rough
comparison between this centripetal force and the Lorentz force: Fc/FLorentz ≈ meω/eB ≈ 10−11ω/B. For any realistic
ratio of ω/B, this ratio is tiny, i.e. a negligible fraction of the induced electric field is required to drive the circular motion
of charges.

Let’s derive equation (2). Consider a dipole moment p at position r in a non-uniform electric field E. Fictitiously divide
the dipole moment into 2 point charges ±q separated by a small distance δ, such that p is equal to qδ. Let’s say that
the negative charge is at position r−, then the positive charge is at position r+ = r− + δ. The force on the negative
charge is simply F− = −qE(r−), while on the positive charge F+ = qE(r+) = qE(r− + δ). The force on the dipole is
thus F = q(E(r− + δ) − E(r−)) = q(E(r−) + δ · ∇E(r−) − E(r−)) = qδ · ∇E(r−) = p · ∇E(r−). In the limit δ → 0,
r− → r, and we get F = (p · ∇)E.
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