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1 Assumptions

1. Due to nonzero resistivity, no current will flow in the absence of external magnetic and electric fields.

2. The motion of the ball is non-relativistic.

3. The system is in a steady state.

4. The homogeneous magnetic field points in the same direction as the angular velocity (due to the B2

in the final answer, this turns out to not matter).

5. The magnetic field generated by currents in the ball is negligible (justification for this one is given in
the appendix).

2 Electric potential inside the ball

Note that there cannot be any radial currents or currents toward the poles, since otherwise by symmetry,
charge would build up either at the center of the sphere or the poles, violating the steady-state assumption.
Thus, the motion of any electron must be in circles around the rotation axis. Since the E and B fields are
static in steady state, there cannot be a net electromotive force around any loop by Faraday’s law, so there
are no currents. Let an electron be a distance r∗ from the rotation axis. We can conclude the following:

1. Since there are no currents, the particle is moving at a speed v = ωr∗.

2. The net Lorentz force must be zero toward the axis of rotation, so ωr∗B + E = 0 =⇒ E = −ωBr∗,
with the negative sign indicating an inward direction.

Integrating from the rotation axis, we get that the potential at a distance r∗ inside the sphere is given by
1
2ωBr∗2 + V0 for some constant V0.

3 Electric potential outside the ball

Let r bet the distance from the origin and θ the angle with the x-axis. At the boundary of the sphere, we
can rewrite the electric potential as
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This satisfies Laplace’s equation (see appendix), so by the uniqueness theorem, this is the potential every-
where in free space outisde of the sphere. Since the sphere is neutral, the potential cannot fall off as 1

r , so
the first term must be zero, and we simply have
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,

for r > R.

4 Interaction force

Along the x-axis, θ = 0, so

V (r) = −ωBR5

3r3
=⇒ E(r) = −ωBR5

r4
.

The interaction force will arise due to the polarization of the second ball, creating an electric dipole moment.

Since L ≫ R, we will assume a constant electric field of E = −ωBR5

L4 for the purposes of calculating the
polarization. The dipole moment of a conducting sphere in a uniform electric field is equal to

p = 4πε0R
3E = −4πε0ωBR8

L4
,

pointing inwards. A proof of this fact is given in the appendix. Finally, the interaction force is given by

p · ∇E = −4πε0ωBR8
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· 4ωBR5

L5
= −16πε0ω

2B2R13

L9
,

where the negative sign indicates an attractive force.

5 Appendix A: Justification for ignoring generated magnetic field

Let the total charge on the electrons in the ball be Q. The generated electric field is on the order of Q
R2ε0

.

The generated magnetic field is on the order of µ0Qω
R . Thus, the ratio of the Lorentz force due to these fields

on a charged particle is
ωRB

E
= ω2R2µ0ε0 =

ω2R2

c2
≪ 1,

since the motion of the ball was assumed to be non-relativistic.

6 Appendix B: Proof of potential formula

In spherical coordinates, the Laplacian is given by
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For a cylindrically symmetric system, the last term is zero. As a check, we can calculate that for V (r, θ) = 1
r ,

∇2V =
1

r2
∂

∂r

(
r2 · − 1

r2

)
= 0.

For V (r, θ) = 1
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and
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so ∇2V = 0 in this case as well. Hence, any linear combination of 1
r and 1

r3 (3 cos
2 θ−1) will satisfy Laplace’s

equation, including the given formula for the potential. This ansatz is motivated by the multipole expansion
for the potential using Legendre polynomials, given by
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7 Appendix C: Proof of polarization of sphere

Consider two homogeneous balls of charge −q and +q and radius R located at (0, 0) and d = (d, 0), respec-
tively, where d ≪ R. The electric field at a point r is

E =
1

4πε0
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+
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)
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Note that this configuration has no net charge in the intersection of the balls, and has a dipole moment
of qd = −4πε0R

3E. Hence, a conducting sphere in a uniform electric field E will set up surface charges
equivalent to the intersection of two such homogeneous balls of charge, and develop a dipole moment of
p = 4πε0R

3E to cancel out the E-field inside the sphere.
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