Puysics cup 2025

PROBLEM 1: INTERACTION FORCE

AUTHOR: ENEJ JAUK

MENTORS: MAG. CIRIL DOMINKO, ALEXANDER (GAYDUKOV

DATE: 13/14 OCTOBER 2024
GIMNAZIJA BEZIGRAD



Problem

The center of a metal ball with radius R is at the origin; the ball is in a homogeneous magnetic field B that is parallel to the
x-axis. The ball rotates with an angular speed w around the x-axis. At x = L,y = z = 0, there is another identical metal ball

that does not rotate. Find the interaction force between the two balls, assuming that L > R and R < u%



1 Solution

1.1 General consideration

Here we just consider how should we solve the problem. Firstly By creates a uniform magnetization and also it creates an
uniform magnetic field inside the sphere. Also this magnetic field crates the nonzero charge density inside the ball. This ball
then creats a magnetic field inside and outside the ball. This electrically and magnetically polarised ball crates a net field on
the other ball, which crates a net force. There will be a force due to magnetization of the spheres. There will be force due to
electrical interaction.

1.2 Approximation

Firstly, the problem states that the ball is nonmagnetic. This means that u ~ g, meaning that both balls are not polarised.
First we exploit what does the second approximation in the problem means. We shall now estimate how large is the magnetic
field inside the ball due to induced charge and how large is the field due to the bound currents. Magnetic field inside the ball
put in the uniform magnetic field go, will be:

B=B,+ B (1)

Field B’ of the charges moving in the ball, due to equation J= %(E + U X é), will creats their own field. We now estimate this
field:

B/~ RoQ s o )
Charge that moves can be estimated trough the Ohm'’s as (Incucced voltage between center and the shell of the ball) :
Qul ~wR*B (3)
R
Where B represents field in equation (1). Then we get:
4
B ~ WM}%fp B )
If the ratio B’/B is denoted by K, than
K ~ °"“;Rz (5)

Now we recall from the problem that R < , /u%’ and combined with (5) we get:

K<t (6)
I
Since the ball is non-magnetic:
K <1 (7)

This means, the field of the charges moving relative to the ball is negligible compared to the By. First approximation just tells
us, that the second contribution to the first ball’s polarisation, by the polarisation of the second ball is negliglible.

There is also one more consideration we need to take into the account. Will the magnetic field of the co-rotating charge

significantly impact the magnetic field inside the ball? The answer is no, by the argument of the dimensional analysis, field of

the rotating charge density will be:

B" ~ pR3wHY

PR

B// ~ Eo(BQ + B// + B/'/)R2w2u0

w?R?
2

Bl/ ~ (BO + B/l _|_ Bl//)
Due to consideration of tensial strenght of most metals, we can safely assume that Rw < ¢. Thus this contribution can be safely
neglected. By same argument field of rotating surface charge will be:

w2R2

B/// ~ 62 (BO +BH + B///)

and as for charge density, this will be negligible compared to By.
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1.3 Calculating the electric charge configuration

Charge inside the ball will obey the following equation:

A discussed before, J is small and can be set to zero. Than we get a simple equation:
E=-txB (9)

Now we can now approximate that the magnetic inside filed, created by the static charge relative to the ball is approximately
zero (prove in section(1.2)) Thus the field inside the ball is uniform. now with the help of 9. We can get how the field should
look in the interior of the ball:

E=—-(@x7)xB

E=—-wBs (10)

s represents the vector in the cylindrical coordinates, lying in the zy plane. Then the 1. Maxwell equation gives us:

V.-E=-2wB="
€0

p = —2¢pBw (11)

For o one need to solve Laplace equation. Laplace for cylindrical coordinates is given by:
V=> (4R + z+1 )Pi(cos 6) (12)
1=0

P, represents the 1-th Lagedre’s polynomial. Our boundary conditions are given by:
e V=0, when r — o0
o V=V, +wBsinie s21n"‘ ¢ when r=R

First condition gives us that all A; must be 0. The second gives us

— B R%sin® 0
;WPI(COSQ) = Vc+wBT (13)

Since (13) must hold for arbitrary 6, equation can only hold if:

B =0;1+#1,2
Then we obtain: B B BR
0 2 w . 92
— 1
= + 2R3(2 3sin?0) =V, + sin” 0 (14)
Since it must hold for arbitrary 6:
BR
By =-2 (15)
3
BR3?
—V,R+ Y . (16)
Thus potential outside the ball can be written as:
R wBR? wBR®
V ==(V, — P 17
r (Ve + 3 ) 33 (17)
From E = —VV we can obtain:
. R. _ wBR? R R3 _ wBR®%sinfcosf -
E= TiQ‘/CT—i_ 3 (ﬁ_?)TTPz)T_—T4 0 (].8)
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Now the Inside radial electric field at the boundary is given by:

Er=-— (1-P) (19)
Surface charge density is given by equation % = By above — Er pelow. From (19):
o 1 wBR
—==V.+——(3—-5P. 20
L= Vet m6-5P) (20)

By the conservation of charge, the total charge induced on the surface of the ball needs to be %wR?’eon. Thus we get:

%WR?’eOBw = / (%Va + %(3 — 5Py))ep2m R? sin 0 df
0

4 m BR? BR?
gR?Bw:/ (Vc+w3 (3—5P2)sin0d¢9:2Vc+w3 6
0

B 2
V.= 228 ()

Thus charge density is:

o= @(2 —5P) (22)

Field that this charge distribution crates outside the ball is (in radial direction):
BRSP. 0
B = w »(cos 6) (23)

rd

1.4 Electric force

Now electric field of this ball will polarise the second ball. Since the second ball is identical to the first one, this means that we
can set p — oo in equation (8). Thus we get:
E=—-UxB (24)

But since we have a static case and the ball does not rotate, the only way this equation can be true is by setting Em to 0. Thus
the second ball creates the polarisation(since we are working at the angle § = 0, P, = 1:

wBR® |

P = —3¢yE = 3¢ T (25)

Force on the dipole can be calculated with the following equation:

— —

F=(-V)E

So the force between the 2 balls is:
WBR® dx 1, 0F
L4 3 or
wBR® 8t _swBR®
F=bo 3 s
W?B2R'
7.9

F:360

F = 167eg (26)
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A Ball in uniform electrical field

If a ball with ¢ = oo is put into the external uniform field Fy it develops the polarisation. Neutral ball can be thought as a
superposition of uniformly charges balls. After the external field is applied, charges in each of the charges ball will feel force. At
the static state, the force, produced by the external field must be the same and opposite to the one, created by the polarisation.

Field of uniformly charged ball inside the ball is E= £7. If the centers of the balls are apart by d, than:

3
But since: B
p=Qd
This leads to .
= py_pvV - P
Ep==d==—pd=—
3 3773
So .
- P
Ey = —3 (27)

B Force on the dipole

For an ideal dipole, the dipole moment is given by the equation p' = lim| dl—0 qai So the force on each charge is equal to £F;q;.
Combined force is thus equal to

F=q(Ey—E_)
. Since the point, at which this field is estimated are d apart, we rewrite this formula as:
F= qAE

Delta of vector E can be rewritten by each component as:

Taking into the account all components:

So force can be rewritten as:



C Tensile strength

By dimensional analysis, Rw,;+ =

Yield Ultimate tensile N
N Density
Material ¢+ strength ¢ strength 4 ¢
(gfem)
(MPa) (MPa)
Steel, structural ASTM A36 steel 250 400-550 7.8
Steel, 1090 247 841 7.58
Chromium-vanadium steel AISI 6150 | 620 940 78
Steel, 2800 Maraging steel*! 2,617 2,693 8.00
Steel, AerMet 3401°] 2,160 2,430 7.86
Steel, Sandvik Sanicro 36Mo logging
. 6] 1,758 2,070 8.00
cable precision wire!®!
Steel, AISI 4130,
water guenched 855 °C (1,570 °F), 951 1,110 7.85
480 °C (900 °F) temperl”!
Steel, API 5L X65(¢] 448 531 78
Steel, high strength alloy ASTM A514 | 690 760 7.8
Acrylic, clear cast sheet (PMMA)I®] | 72 87110l 1.16
Acrylonitrile butadiene styrene 5 5 06153
(ABS)I1 o
High-density polyethylene (HDPE) 26-33 37 0.85
Polypropylene 12-43 19.7-80 091
Steel, stainless AISI 302!12/ 275 620 7.86
Cast iron 4.5% G, ASTM A-48 130 200 73
"Liquidmetal” alloylc!ation needed) 1,723 550-1,600 6.1
Beryllium!'®l 99.9% Be 345 448 1.84
Aluminium alloy('! 2014-T6 414 483 2.8
s P O] & &R

Figure 1:

This values all show that (WR)epitear < C-

Critical tensions




