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Problem

The center of a metal ball with radius R is at the origin; the ball is in a homogeneous magnetic field B that is parallel to the
x-axis. The ball rotates with an angular speed ω around the x-axis. At x = L, y = z = 0, there is another identical metal ball

that does not rotate. Find the interaction force between the two balls, assuming that L ≫ R and R ≪
√

ρ
µω
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1 Solution

1.1 General consideration

Here we just consider how should we solve the problem. Firstly B0 creates a uniform magnetization and also it creates an
uniform magnetic field inside the sphere. Also this magnetic field crates the nonzero charge density inside the ball. This ball
then creats a magnetic field inside and outside the ball. This electrically and magnetically polarised ball crates a net field on
the other ball, which crates a net force. There will be a force due to magnetization of the spheres. There will be force due to
electrical interaction.

1.2 Approximation

Firstly, the problem states that the ball is nonmagnetic. This means that µ ≈ µ0, meaning that both balls are not polarised.
First we exploit what does the second approximation in the problem means. We shall now estimate how large is the magnetic
field inside the ball due to induced charge and how large is the field due to the bound currents. Magnetic field inside the ball
put in the uniform magnetic field B⃗0, will be:

B⃗ = B⃗0 + B⃗′ (1)

Field B⃗′ of the charges moving in the ball, due to equation J⃗ = 1
ρ (E⃗ + v⃗ × B⃗), will creats their own field. We now estimate this

field:

B′ ∼ RωQ
1

R2
µ0 (2)

Charge that moves can be estimated trough the Ohm’s as (Incucced voltage between center and the shell of the ball) :

Qω
ρ

R
∼ ωR2B (3)

Where B represents field in equation (1). Then we get:

B′ ∼ ωµ0R
4B

R2ρ
(4)

If the ratio B’/B is denoted by K, than

K ∼ ωµ0R
2

ρ
(5)

Now we recall from the problem that R ≪
√

ρ
µω , and combined with (5) we get:

K ≪ µ0

µ
(6)

Since the ball is non-magnetic:
K ≪ 1 (7)

This means, the field of the charges moving relative to the ball is negligible compared to the B0. First approximation just tells
us, that the second contribution to the first ball’s polarisation, by the polarisation of the second ball is negliglible.
There is also one more consideration we need to take into the account. Will the magnetic field of the co-rotating charge
significantly impact the magnetic field inside the ball? The answer is no, by the argument of the dimensional analysis, field of
the rotating charge density will be:

B′′ ∼ ρR3ω
µ0

R

B′′ ∼ ϵ0(B0 +B′′ +B′′′)R2ω2µ0

B′′ ∼ ω2R2

c2
(B0 +B′′ +B′′′)

Due to consideration of tensial strenght of most metals, we can safely assume that Rω ≪ c. Thus this contribution can be safely
neglected. By same argument field of rotating surface charge will be:

B′′′ ∼ ω2R2

c2
(B0 +B′′ +B′′′)

and as for charge density, this will be negligible compared to B0.
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1.3 Calculating the electric charge configuration

Charge inside the ball will obey the following equation:

J⃗ =
1

ρ
(E⃗ + v⃗ × B⃗) (8)

A discussed before, J⃗ is small and can be set to zero. Than we get a simple equation:

E⃗ = −v⃗ × B⃗ (9)

Now we can now approximate that the magnetic inside filed, created by the static charge relative to the ball is approximately
zero (prove in section(1.2)) Thus the field inside the ball is uniform. now with the help of 9. We can get how the field should
look in the interior of the ball:

E⃗ = −(ω⃗ × r⃗)× B⃗

E⃗ = −ωBs⃗ (10)

s represents the vector in the cylindrical coordinates, lying in the zy plane. Then the 1. Maxwell equation gives us:

∇ · E⃗ = −2ωB =
ρ

ϵ0

ρ = −2ϵ0Bω (11)

For σ one need to solve Laplace equation. Laplace for cylindrical coordinates is given by:

V =

∞∑
l=0

(AlR
l +

Bl

rl+1
)Pl(cos θ) (12)

Pl represents the l-th Lagedre’s polynomial. Our boundary conditions are given by:

• V=0, when r → ∞

• V = Vc + ωBR2 sin2 θ
2 , when r=R

First condition gives us that all Al must be 0. The second gives us

∞∑
l=0

Bl

Rl+1
Pl(cos θ) = Vc + ωB

R2 sin2 θ

2
(13)

Since (13) must hold for arbitrary θ, equation can only hold if:

Bl = 0; l ̸= 1, 2

Then we obtain:
B0

R
+

B2

2R3
(2− 3 sin2 θ) = Vc +

ωBR2

2
sin2 θ (14)

Since it must hold for arbitrary θ:

B2 = −ωBR5

3
(15)

B0 = VcR+
ωBR3

3
(16)

Thus potential outside the ball can be written as:

V =
R

r
(Vc +

ωBR2

3
)− ωBR5

3r3
P2 (17)

From E⃗ = −∇V we can obtain:

E⃗ =
R

r2
Vcr̂ +

ωBR2

3
(
R

r2
− 3

R3

r4
P2)r̂ −

ωBR5 sin θ cos θ

r4
θ̂ (18)
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Now the Inside radial electric field at the boundary is given by:

Er = −2ωBr

3
(1− P2) (19)

Surface charge density is given by equation σ
ϵ0

= Er,above − Er,below. From (19):

σ

ϵ0
=

1

R
Vc +

ωBR

3
(3− 5P2) (20)

By the conservation of charge, the total charge induced on the surface of the ball needs to be 8
3πR

3ϵ0Bω. Thus we get:

8

3
πR3ϵ0Bω =

∫ π

0

(
1

R
Vc +

ωBR

3
(3− 5P2))ϵ02πR

2 sin θ dθ

4

3
R2Bω =

∫ π

0

(Vc +
ωBR2

3
(3− 5P2) sin θ dθ = 2Vc +

ωBR2

3
6

Vc = −ωBR2

3
(21)

Thus charge density is:

σ =
ϵ0ωBR

3
(2− 5P2) (22)

Field that this charge distribution crates outside the ball is (in radial direction):

Er =
ωBR5P2(cos θ)

r4
(23)

1.4 Electric force

Now electric field of this ball will polarise the second ball. Since the second ball is identical to the first one, this means that we
can set ρ → ∞ in equation (8). Thus we get:

E⃗ = −v⃗ × B⃗ (24)

But since we have a static case and the ball does not rotate, the only way this equation can be true is by setting E⃗in to 0. Thus
the second ball creates the polarisation(since we are working at the angle θ = 0, P2 = 1:

P⃗ = −3ϵ0E⃗ = 3ϵ0
ωBR5

L4
x̂ (25)

Force on the dipole can be calculated with the following equation:

F⃗ = (p⃗ · ∇)E⃗

So the force between the 2 balls is:

F = 3ϵ0
ωBR5

L4

4π

3
R3 ∂E

∂r

F = 12ϵ0
ωBR5

L4

8π

3
R3ωBR5

L5

F = 16πϵ0
ω2B2

0R
13

L9
(26)
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A Ball in uniform electrical field

If a ball with ϵ = ∞ is put into the external uniform field E0 it develops the polarisation. Neutral ball can be thought as a
superposition of uniformly charges balls. After the external field is applied, charges in each of the charges ball will feel force. At
the static state, the force, produced by the external field must be the same and opposite to the one, created by the polarisation.
Field of uniformly charged ball inside the ball is E⃗ = ρ

3 r⃗. If the centers of the balls are apart by d, than:

E⃗in =
ρ

3
d⃗

But since:
p⃗ = Qd⃗

This leads to

E⃗in =
ρ

3
d⃗ =

ρV

V 3
ρd⃗ =

P⃗

3

So

E⃗0 = − P⃗

3
(27)

B Force on the dipole

For an ideal dipole, the dipole moment is given by the equation p⃗ = lim|d⃗|→0 qd⃗. So the force on each charge is equal to ±Eiqi.

Combined force is thus equal to
F⃗ = q(E⃗+ − E⃗−)

. Since the point, at which this field is estimated are d apart, we rewrite this formula as:

F⃗ = q∆E⃗

Delta of vector E can be rewritten by each component as:

∆Ei = (∇Ei) · d⃗

Taking into the account all components:
∆E⃗ = (d⃗ · ∇)E⃗

So force can be rewritten as:
F⃗ = (p⃗ · ∇)E⃗ (28)
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C Tensile strength

By dimensional analysis, Rωcrit =
√

pcrit

ρ .

Figure 1: Critical tensions

This values all show that (ωR)critcal ≪ c.
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