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1 Setup

Since the balls are nonmagnetic there will be no magnetic interaction between
the balls. However, Lorentz force acts on the charges in the rotating ball because
they are in the presence of a magnetic field. The charges will rearrange until
the Force from the electric field counteracts the Lorentz force, so there will be
a electrostatic interaction between the balls.

Since R ≪ L, the lowest order term of the multipole expansion is a good
approximation for the electric fields of the balls. The electric field from the
rotating ball will induce an electric dipole in the stationary ball. Since the
dipole moment will be on the order of the electric field at L, the electric field at
from the dipole on the rotating ball will be of even lower order than the electric
field at L, so the electric field from external sources in the rotating ball will be
approximately 0.

Thus, the force from the electric field of the rotating ball on the stationary
ball should be a good approximation of the interaction force. Consequently,
the induced dipole moment will be oriented such that the interaction force is
attractive.

2 Justsification for B⃗ ≈ Bx̂ in the rotating ball

Because the charge density in the rotating ball is non-zero there will be a mag-
netic field from the movement of the charges due to it’s rotation, and a magnetic
field from the free currents in the ball. The following subsections will be dedi-
cated to verifying that the ansatz where these effects are negligible (so B⃗ = Bx̂

in the ball) is approximately the real solution for B⃗

The Lorentz force will be qv⃗×B⃗ = q(ω⃗×r⃗)×B⃗ = qωB(x̂×r⃗)×x̂ = qωB(r⃗−(r⃗·
x̂)x̂) which in cylindrical coordinates (s, θ, ϕ) is qωBsŝ. Since the force from the

electric field must counteract the Lorentz force, qE⃗ = −qωBsŝ ⇒ E⃗ = −ωBsŝ
from this formula, magnetic field contributions from currents and rotation can
be calculated.

1



2.1 Magnetic field from rotation

Let Br denote the magnetic field generated by rotation (at a arbitrary point).
The electric field inside the rotating ball will be proportional to B and there-
fore so will the charge density. The charge density will be proportional to the
current from rotation and so proportional to the magnetic field from rotation
Br(tl;dr Br ∝ B). The other relevant variables will be µ0, ϵ0, ω,R with the
only dimensionless combination (up to exponent) being ωR√

µ0ϵ0
= ωR

c where c is

the speed of light. So Br

B = f(ωR
c ) I will take the liberty to assume that the

fastest point on the ball will be much slower than the speed of light, so the ball
is rotating ”slowly” so the magnetic field of the ball will be ”small” or more
precisely Br

B is small.

2.2 Magnetic field from currents

Let Bc denote the magnetic field generated by current (at an arbitrary point)
Bc ∝ J ∝ E ∝ B where J is current density. Since Bc is also dependent on
the quantities µ0, ω,R, ρ: Bc

B = f(µ0, ω,R, ρ). So since the quantities µ0, ω,R, ρ
only have only 1 dimensionless combination(up to exponent): ρ

ωµ0R2 which is
≫ 1 as given in the problem. Since the resistivity is ”large” it can be assumed
that the current is ”small” so, so the magnetic field from the current is ”small”.
More precisely Bc

B is small.

3 Interaction force calculation

The total dipole moment will have the same symmetries as the electric field.Since
electric field is invariant under rotations about the x axis, and reflections about
the yz plane at x = 0 the total dipole moment must be 0, the next term in the
multipole expansion would the the quadrupole.

3.1 Finding the field from the rotating ball

Since a quadrupole potential is suspected possible quadrupole potentials will be
investigated. Using a process analogous to dipole potentials are constructed,
place a dipole of dipole moment px̂ at the origin and −px̂ at (d, 0, 0) taking
limd→0 of the potential. Since the potential associated with a dipole moment p⃗
is 1

4πϵ0

p⃗·r⃗
r3 , the potential of the quadrupole will be :

limd→0
p

4πϵ0
( x

(x2+y2+z2)
3
2
− x−d

((x−d)2+y2+z2)
3
2
) = limd→0

pd
4πϵ0

d
dx (

x

(x2+y2+z2)
3
2
).

Fix pd to a constant A, then the limit becomes:
A

4πϵ0
d
dx (

x

(x2+y2+z2)
3
2
) = A

4πϵ0

−2x2+y2+z2

(x2+y2+z2)
5
2
= A

4πϵ0
−3x2+r2

r5 .

Notice (miraculously) that integrating the electric field inside the ball gives
the potential to be − 1

2ωBs2 = − 1
2ωB(r2 − x2) + C1, so on the surface of the

ball, − 1
2ωB(R2 − x2) + C1 = 1

2ωBx2 + C2. So if A = − 2πϵ0ωBR5

3 then the
quadrapole potential is equal to the potential of the ball on the surface up to
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a additive constant. A point charge at the center has an equipotential surface
on the surface of the ball, therefore the potential of the rotating ball on the
surface can be expressed as the sum of the potentials of a point charge and
the quadrupole constructed above. Since this satisfies the Dirichlet boundary
condition, by the uniqueness theorem, the potential outside the rotating ball
is the sum of the potential of a point charge and the quadrupole. Since the
rotating ball has no net charge, the potential outside is simply the potential of

the quadrupole constructed above: Vr =
1

6
ωBR5 2x2 − y2 − z2

(x2 + y2 + z2)
5
2

.

3.2 Induced dipole moment on the stationary ball

The electric field on the stationary ball is in the x direction, by rotational sym-
metry and is in an approximately uniform electric field E⃗ = Ex̂. The potential
from the ball on itself must then be, E(x−L) up to an additive constant(for the
same reasons as said in section 3.1 this constant can be ignored).the potential
of a dipole with a dipole moment p at L is p

4πϵ0
x−L
r3 so if p = 4πϵ0R

3E then
the potential from the dipole moment is equal to the potential from the ball
on it’s surface. This constitutes a Dirichlet boundary condition and again, by
uniqueness, the potential outside the ball is equal to the dipole potential, so it’s

dipole moment is −4πϵ0R
3 dVr

dx |(L,0,0) = 4πϵ0ωBR8 1
L4 so p = 4πϵ0ωBR8 1

L4

3.3 Force calculation

The magnitude of the force from a electric field on 2 point charges with charge
q and −q separated by a small distance in the x direction is |qE⃗(x) − qE⃗(x +

d)| ≈ |E⃗(x) − q(E⃗ + dE⃗
dx d)| = |qddE⃗

dx | = |pdE⃗
dx = |pd2Vr

dx2 |, because by symmetry,
Ey = Ez = 0 along the x axis. The interaction force is then a force of attraction

with magnitude |F | = |16πϵ0ω
2B2R13

L9
|
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