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1 Electric field of rotating sphere

The following argument is adapted from Macdonald (2002), but with a few simplifications
and shortcuts.

We can assume that the nonrotating sphere has no effect on the charge distribution
or currents in the rotating sphere, since R ≪ L. Any effect of the nonrotating sphere
on the charge distribution of the rotating sphere would be a higher order effect since
the nonrotating sphere does not generate any electric or magnetic fields in a uniform
magnetic field. We can hence analyse the steady state fields near the rotating sphere
without considering the nonrotating sphere.

Using Ohm’s Law,

J =
1

ρ
(E+ v ×B)

Where we have assumed drift velocity is much less than the tangential velocity due
to rotation. Divergence of current density must be 0 at steady state, as any creation or
removal of charge will result in a change in the electric field. Taking the curl of Ohm’s
law, we also find that the curl of the current density field is 0.

The eddy currents must satisfy

∇ · J = 0, ∇× J = 0

It turns out that all nonzero fields that satisfy zero divergence and curl must decay
slowly towards infinity. Since the current density outside the sphere must be exactly 0,
the field in our case cannot possibly decay slowly. Intuitively, if we follow a field line, it
must curl at some point in order to be contained within the sphere. This means that the
only possible current field is where current everywhere is 0. The above is a special case
from the argument given in the appendix of Nurge et al., 2017. The electric field has to
cancel out the force by the magnetic field.

So, inside the sphere,

E+ v ×B = 0 =⇒ E = −ωBr⊥,where r⊥ =

 0
ry
rz


Note that we have assumed that the tangential velocity due to rotation of the sphere

is nonrelativistic, which allows us to ignore an “advection current” created by the motion
of the material itself (as opposed to Ohmic current). Taking the divergence, we find that
there is a constant volume charge density

1

http://kirkmcd.princeton.edu/examples/rotatingsphere.pdf


ρe = −2ϵ0ωB

Since E = −∇V , inside the sphere,

∇V (r < R) = ωBr⊥

Writing the gradient in terms of spherical coordinates (with θ measured from the
x-axis)

r̂
∂V

∂r
+

θ̂

r

∂V

∂θ
= ωBr⊥ = ωBr sin(θ)(r̂ sin θ + θ̂ cos θ)

∴
∂V

∂r
= ωBr sin2 θ =⇒ V (r < R) = V0 +

1

2
ωBr2 sin2 θ

Note that the potential is symmetric across the y-z plane through the center of the
sphere, and is also azimuthally symmetric about the x axis. Even though the volume
charge density is spherically symmetric, the potential is not spherically symmetric, due
to surface charges.

Now we have to solve for the potential far away, outside the sphere. There is an exact
solution outlined in Appendix 2, which is what Macdonald does in his paper. However,
we can also find an estimate through some intuitive reasoning. Expanding the potential
as a multipole, with a power series in r and arbitrary functions in θ,

V (r ≫ R) =
∞∑
l=1

1

rl
fl(θ)

Now we can consider each term individually, starting from the most significant term.
Since we are only concerned with far-field effects, we only need to consider the largest
nonzero term. Since the sphere is electrically neutral, there is no monopole moment, so
there is no first order term. There will also be no second order term, as a dipole (which
would be entirely created from surface charges) would lead to an unsymmetry in the
internal electric field across the y-z plane. Hence there is only a third order quadrupole
term. Intuitively, the quadrupole moment is nonzero as more positive charges buildup
at the “equator” (y-z plane passing through the center), than at the poles. This would
create a quadrupole moment.

Using dimensional analysis on the terms in the Laplacian (ω, B, and R), we find that
the potential at x = L is

V (r = L, θ = 0) ∝ ωBR5

L3
f3(0) ∼ −ωBR5

L3

This is a unique solution for V ∝ r−3. We have assumed that the constant of propor-
tionality (together with f3(0) which is the function in θ) is of order unity. The potential
is negative as the higher density of positive charges are at the “equator”. This causes the
electric field along the x-axis to point inwards

We can now calculate the electric field at the sphere at x = L, which allows us to
determine the interaction force. We must also assume that the second sphere does not
create any other eddy currents in the original sphere (which is valid since R ≪ L), so

E(r = L, θ = 0) = −∇V ∼ −ωBR5

L4
x̂
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This turns out to be the exact answer with no constant of proportionality, even in the
near field (See Appendix 2). The electric field can be treated as constant at the location
of the nonrotating sphere, since R ≪ L. Now we can find the surface charge distribution
of the nonrotating sphere.

2 Electric force on nonrotating sphere

We can imagine the uniform field as being produced by two point charges. One at
x = L+ b with charge +q = 2πϵ0b

2E and x = L− b with charge −q where b ≫ R.
Using the method of image charges: A charge located distance b away from the center

of a conducting sphere induces an electric field equal to that produced by an image charge
at R2/b from the center of the sphere (in the direction of the real charge), with charge
−qR/b. We find that the electric field produced by the nonrotating sphere is equal to
that produced by a dipole at the center of the sphere with dipole moment:

p = qd = 2q
R3

b2
= 4πϵ0R

3E

Note that the dipole moment has the same direction as the E field. Now we claim
that the force exerted on the sphere due to the (uniform) electric field is equal to the
force exerted on a dipole in the same electric field.

The force exerted by the sphere on the two charges producing the electric field (which
we will call “electric field charges”) is equal and opposite to the force exerted on the
sphere due to the electric field, by Newton’s third law. Since the electric field created by
the sphere is equal to that of a dipole with moment described above, the force exerted
by the dipole on the electric field charges is equal to the force exerted by the sphere on
the electric field charges. Then we use Newton’s third law again: the force on the electric
field charges due to the dipole is equal and opposite to the force on the dipole due to the
electric field.

In other words: force on dipole due to E = - force on E due to dipole = - force on E
due to sphere = force on sphere due to E. Hence, the force on the sphere is

F = (p · ∇)E = 4πϵ0R
3E

4ωBR5

L5
x = 16πϵ0ω

2B2R
13

L9
x̂

The interaction force is repulsive.
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4 Appendix 1: Mysterious second strong inequality

It appears that we have not used the second strong inequality. It is somewhat extraneous,
but we can use it to prove that even if there were eddy currents in the rotating sphere,
the magnetic field would not be affected significantly.

The eddy current is at most of order:

J ∼ vB

ρ
∼ ωRB

ρ

Which creates a magnetic field:

B′ ∼ µ0JR ∼ µ0ωB

ρ
R2

Compared to the applied magnetic field,

B′

B
∼ µ0ωR

2

ρ

(Note that µ0 = µ) The fraction is much less than one. Hence we can ignore any eddy
currents created in the rotating sphere.
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5 Appendix 2: Exact solution to the Laplacian

Now, to solve the Laplacian outside the sphere, we have to use Legendre polynomials
to get an exact solution. The general solution for the potential outside the sphere is a
superposition of the Legendre polynomials

V (r, θ) =
∞∑
l=0

(
Alr

l +
Bl

rl+1

)
Pl(cos θ)

Since the potential must go to zero at infinity, Al = 0. The potential is continuous at
the boundary r = R, so we can equate the potential to the interior potential.

P0 = 1, P1 = cos θ, P2 = (3 cos2 θ − 1)/2

In the interior,

V (r < R) =

(
V0 +

ωBr2

3

)
P0 −

ωBr2

3
P2

Matching the Legendre polynomial outside the sphere at r = R+ to the potential
inside the sphere at r = R−, we find that the only nonzero Legendre coefficients are:

B0 = RV0 +
ωBR3

3
, B2 = −ωBR5

3

We can now find the potential at a distance r = L, and θ = 0.

V (r = L, θ = 0) = V0
R

L
+

ωBR2

3

(
R

L
− R3

L3

)
It seems that it may be difficult to find V0, but we can prove that the 1/L term will

be 0 through a multipole argument. Since the rotating sphere is electrically neutral, it
must have zero monopole moment far away. Hence, there cannot possibly be a monopole
1/L term! Hence we can conclude that V0 = −ωBR2/3.

∴ V (r = L, θ = 0) = −ωB

3

R5

L3
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