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Problem Statement

The center of a metal ball with radius R is at the origin;
the ball is in a homogeneous magnetic field B that is
parallel to the x-axis. The ball rotates with an angular
speed ω around the x-axis. At x = L, y = z = 0 there is
another identical metal ball that does not rotate. Find
the interaction force between the two balls, assuming that
L >> R and R <<

√
ρ/µω, where ρ denotes the ball’s

resistivity and µ is the permeability.

Dipole-Dipole Interaction

First, let us forget about the rotation and analyze what
is happening. We know that a uniform magnetic field
induces a magnetization on the sphere given by:1

M =
3

µ0

(
µr − 1

µr + 2

)
B (1)

So, both spheres have an induced dipole moment and
they attract each other. It is a standard result that
the force between two magnetized spheres is the same
as that between two point dipoles.2 The dipole moment
of a sphere is given by

m =
4π

3
R3M =

4πR3

µ0

(
µr − 1

µr + 2

)
B (2)

which generates a magnetic field at the center of the
other sphere that is given by

Bsphere =
µ0

4π

[
3(x̂(x̂ ·m)−m]

L3

]
=

µ0m

2πL3
x̂

(3)

The interaction between a dipole and a magnetic field
is given by U = −(m · B) and so, the force would be
given by

Fdipole-dipole = −∇U = ∇(m ·Bsphere)

= −3µ0m
2

2πL4
x̂

= −24π
B2

µ0

(
µr − 1

µr + 2

)2
R6

L4
x̂

(4)

The negative sign is just to represent that it is an at-
tractive force.

Electric field due to Rotation

Now consider what happens when one of the spheres
starts to rotate, the charges in the sphere cannot be mov-
ing with respect to the conductor at steady state as that
would cause dissipation (due to the resistivity, remem-
ber that there is no emf in the sphere, the flux doesn’t
change). However, there is now a Lorentz force that acts
on the electrons due to the magnetic field that is unac-
counted for. This means that charges in the conductor
must rearrange in a way so that the net electric field in-
side the conductor cancels the Lorentz force due to the
magnetic field. This ensures that the electrons do not
move with respect to the conductor and hence no dissi-
pation (a steady state solution).

It is important to note that E + v × B = 0 and not
mv2/r. This is because, if you think about a sphere ro-
tating in vacuum with no external fields, the centripetal
force on the electrons in the sphere is generated by in-
ternal forces in the sphere. This should still be the case
here, and the electromagnetic forces do not contribute
to the centripetal force and instead must cancel. Let us
work in spherical coordinates,

E(r < R) = −v ×B

= −(wx̂× r)×Bx̂[
a× (b× c) = (a · c)b− (a · b)c

]
= −ωBr+ ωrB cos θx[
x̂ = cos θr̂ − sin θθ̂, x = r cos θ

]
= −ωBr

[
sin2 θr̂ + sin θ cos θθ̂

]
(5)

This is the electric field inside the sphere, let us calcu-
late the corresponding charge density ρ. I used the same
symbol as the resistivity, which is bad manners, but I
believe that the resistivity does not matter in this case
as there is no relative motion of electrons with respect
to the conductors and so no dissipation (unless it plays
some role in calculating carrier density??).
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ρ = ε0∇ ·E

= ε0

[
1

r2
∂
(
r2Er

)
∂r

+
1

r sin θ

∂

∂θ
(Eθ sin θ)

]
= −ε0ωB

[
3 sin2 θ + 2 cos2 θ − sin2 θ

]
= −2ε0ωB

(6)

This is quite a surprising result as it seems to suggest
that the charge density inside the sphere is uniform,
which is not obvious and I cannot think of an intuitive
reason for why this might be the case. Ideally we would
hope that the surface charge density is also uniform
and the net charge on the sphere is zero, leading to no
electric field outside the conductor. However, that might
not be the case and we must rigorously find the surface
charge density assuming it is not uniform.

From the symmetry of the system, clearly the surface
charge density σ and the electrostatic potential φ can
only depend on θ. Applying Poissons equation outside
the sphere we have for r > R:

∇2φ = 0

=⇒ 1

r2
∂

∂r

(
r2

∂φ

∂r

)
+

1

r2sin θ

∂

∂θ

(
sin θ

∂φ

∂θ

)
= 0

(7)

This can be solved in the same way we solve the Hy-
drogen atom, assume a separable solution of the form:

φ(r, θ) = R(r)Θ(θ)

Substituting this into the differential equation:

1

r2
d

dr

(
r2

dR

dr

)
Θ(θ) +

1

r2 sin θ
R(r)

d

dθ

(
sin θ

dΘ

dθ

)
= 0

Dividing by R(r)Θ(θ) and multiplying through by r2

1

R(r)

d

dr

(
r2

dR

dr

)
= − 1

Θ(θ) sin θ

d

dθ

(
sin θ

dΘ

dθ

)
= λ

This gives us two separate ordinary differential equa-
tions:

1. The radial equation:

d

dr

(
r2

dR

dr

)
− λR(r) = 0

2. The angular equation:

1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+ λΘ(θ) = 0

The angular equation is solved by the associated Legen-
dre polynomials Pℓ(cos θ), with λ = ℓ(ℓ+ 1). The radial
equation with λ = ℓ(ℓ+ 1) becomes:

d

dr

(
r2

dR

dr

)
− ℓ(ℓ+ 1)R(r) = 0

The general solution to this equation is:

R(r) = Arℓ +Br−(ℓ+1)

Since, any solution can be written as a sum of separable
solutions we have,

φ(r, θ) =

∞∑
ℓ=0

(
Aℓr

ℓ +Bℓr
−(ℓ+1)

)
Pℓ(cos θ)

However, as usual we assume that the potential van-
ishes at infinity, giving us a general solution,

φ =

∞∑
ℓ=0

(
Bℓr

−(ℓ+1)
)
Pℓ(cos θ) (8)

where Pℓ(cos θ) are the Legendre polynomials and Bℓ

is determined by the boundary conditions. To get the
boundary conditions, say the potential at the center of
the sphere is φ0, this is with respect to potential at in-
finity as always, then from the equation of the electric
field (5) we have the potential just below the surface of
the sphere

φ(r = R−, θ) = φ0 + ωB sin2 θ

∫ R

0

rdr

= φ0 +
1

2
ωBR2 sin2 θ

(9)

There are only zeroth and second order terms in this
equation and so Bℓ = 0 if ℓ ̸= 0, 2. We have sin2 θ =
2
3 (1− P2(cos θ)), we have

φ(r = R−, θ) = ϕ0 +
1

3
ωBR2 − 1

3
ωBR2P2(cos θ))

applying boundary conditions at r = R

B0 = ϕ0R+
1

3
ωBR3

B2 = −1

3
ωBR5

(10)

And this means that the electric field outside the
sphere is actually non-zero, i.e the charge distribution
on the surface must be non-uniform. We first calculate
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the electric field outside the sphere and once again ap-
ply boundary conditions on the surface to estimate the
electric field.

E(r > R) = −∇φ

= −∇
(
B0

r
+

B2

2r3
(3 cos2 θ − 1)

)
=

(
B0

r2
+
3B2

2r4
(3 cos2 θ − 1)

)
r̂ +

3B2

r4
sin θ cos θθ̂

(11)

So the difference between the radial electric field at
r = R+ and r = R− would give us the surface charge
density (which is non-uniform).

σ(θ) = ε0(E(R+)− E(R−))

=
ε0φ0

R
+

ε0ωBR

6
(11− 15 cos2 θ)

(12)

How to determine φ0?? We are yet to use the fact that
the metal ball was initially neutral, let us do that, charge
on surface:

Qsurface = 2πR2

∫ π

0

σ(θ) sin θdθ

= 4πε0φ0R+
πε0ωBR3

3
(22− 10)

= 4πε0φ0R+ 4πε0ωBR3

(13)

Charge inside would be

Qinside =
4

3
πR3ρ

= −8

3
πϵ0ωBR3

(14)

But Qinside + Qsurface = 0 =⇒ ϕ0 = −BωR2

3 Which
means B0 = 0. Subbing this back into the electric field
(11), we have the electric field outside the rotating sphere
to be

E = −ωBR5

2r4
(3 cos2 θ − 1)r̂ − ωBR5

r4
sin θ cos θθ̂ (15)

Interaction due to Electric field

Great! So, the rotation of the first sphere creates an
electric field in space given by (15), this electric field in-
teracts with the second sphere and induces an electric
dipole in it. This is quite a standard problem1 if we as-
sume that the electric field is nearly uniform over the sec-
ond sphere and we can do that because L >> R. Electric
field at the second sphere is given by (θ ∼ 0)

E = −ωBR5

L4
x̂ (16)

This induces a dipole moment of1

p = 4πε0R
3E = −4πR8

L4
ε0ωBx̂ (17)

The force of interaction of this dipole with the electric
would be given by

Felectric = ∇θ=0,r=L(p ·E)

= ∇θ=0,r=L(pEr)
(
as θ̂ ⊥ p

)
= p∇θ=0,r=L

(
ωBR5

2r4
(3 cos2 θ − 1)

)
= −p

4ωBR5

L5
x̂

= −4πR8

L4
ε0ωB

4ωBR5

L5
x̂

= −16πε0ω
2B2R

13

L9
x̂

(18)

The expression is quite weird, but the units work out.
This is an attractive force. It is important to understand
that though we treated the sphere as a point dipole, since
the electric field was not actually uniform and had a gra-
dient, it led to a force. A uniform electric field would
not have lead to a force, this is why it was important to
take the derivative in general and compute it at θ = 0
and r = L, as in theory there might have been even a
tangential component (not possible due to the symmetry
of the problem of course). Note that any force on the
second sphere must necessarily be due to the first sphere
as, the magnetic field is uniform and therefore exerts no
force on the second sphere.

Corrections to the Magnetic field

I believe that there is another term missing in the
equation due to the rotation, since the sphere has a
non-uniform charge distribution and rotates, there could
be an additional magnetic field generated outside the
sphere and this would further contribute to the inter-
action (through the dipole moment). Let us use super-
position to evaluate this magnetic field, first consider the
magnetic field, purely due to the charge inside the ball.
The volume element is described in FIG. 1a, it has

a volume dV = 2πrdrdz and would carry a current
I = ρωdV . Okay, here I will start abusing the assump-
tion R << L, ideally I should do to some arbitrary order
and remove all terms before it, but since there are ele-
ments of order (R/L)9 in the previous section, I will be
quite sloppy. Specifically, I will not only assume that the
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FIG. 1: Volume and Surface Elements used, z is along
the direction of x, sorry for confusing notation.

magnetic field due to any such loop in FIG. 1a would be
constant over the second sphere but also that every loop
is at distance L from the second sphere (even though they
are actually at distance L − z). Okay, so magnetic field
due to such a loop in FIG. 1a at the other sphere would
be B = µ0Ir

2/2(r2 + L2)3/2 ≈ µ0Ir
2/2L3. Ideally one

would expand to larger order in (r/L) and compare, but
my hope is to get a non-zero contribution of this lower or-
der term so that I can claim that any higher order terms
can be neglected. Basically, I am trying to use R << L
to get the lowest order contribution to each effect, I feel is
relevant even though the orders might not be consistent
between effects, but at least I wouldn’t be missing any
physics. The total magnetic field due to all such loops:

Bbulk =
πµ0ρω

L3

∫ R

−R

dz

∫ √
R2−z2

0

r3dr

=
4π

15
µ0ρω

R5

L3

= −8π

15
ε0µ0ω

2B
R5

L3
x̂

(19)

Now, let us calculate the contribution due to the sur-
face charge, the element is described in FIG. 1b. cos θ =
z/R and so the surface charge density σ(θ) can be written
as

σ(z) = −ε0
BωR

3
+ ε0

BωR

6
(11− 15z2/R2)

=
ε0BωR

2

(
3− 5

z2

R2

) (20)

The charge of this surface element would be σ(z)2πrdz,
where r =

√
R2 − z2. As before, the magnetic field at the

second sphere would be given by

Bsurface =
µ0

2L3

∫ R

−R

dz2πωr3σ(z)

=
ε0Bω2R

2

µ0π

L3

∫ R

−R

dz(R2 − z2)3/2
(
3− 5

z2

R2

)
=

ε0Bω2R

2

µ0π

L3

13π

6
R4

=
13π2

12
ε0µ0ω

2B
R5

L3
x̂

(21)

Clearly, the surface and bulk magnetic fields are un-
equal therefore the net extra magnetic field generated
due to rotation is given by

Bcorrection = πε0µ0ω
2B

R5

L3

(
13π

12
− 8

15

)
= πε0µ0ω

2B
R5

L3

65π − 32

60
x̂

(22)

This magnetic field once again would act as a force on
the second sphere’s magnetic moment, given by

Fcorrection = ∇(m ·Bcorrection)

= −mπε0µ0ω
2B

R5

L4

65π − 32

20
x̂

(23)

Actually, this non-uniform field would generate a non-
uniform magnetization on the second sphere, but all these
are higher order contributions and I will ignore them and
just use the dipole moment from before

Fcorr. = −
(

µ− µ0

µ+ 2µ0

)(
13π − 32

5

)
π2ε0ω

2B2R
8

L4
x̂

(24)
Combining everything together we have

Ftotal = Fdipole-dipole + Felectric + Fcorrection

= −

(
24π

B2

µ0

(
µ− µ0

µ+ 2µ0

)2
R6

L4
+ 16πε0ω

2B2R
13

L9
+

(
µ− µ0

µ+ 2µ0

)(
13π − 32

5

)
π2ε0ω

2B2R
8

L4

)
x̂

(25)

Since, µr = 1

F = −16πε0ω
2B2R

13

L9
x̂ (26)

Attractive force
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