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Let us first note, that the interaction force can only have a component, directed along x-axis.
Components in y and z direction would cancel due to the symmetry. Also since both balls are metal,
charge can move inside of them, as long as the whole ball remains neutral. Since the second ball is
not rotating, magnetic field at that point has no effect on the ball, therefore only electric field, which
can due to the fact, that L >> x, be assumed to be roughly constant over the ball, can produce a net
force on second ball.

Firstly, let’s consider only the rotating ball in uniform magnetic field, B⃗ = Bx̂. On charges inside
metal there acts magnetic force per unit charge f⃗ = v⃗ × B⃗ = (ω⃗ × r⃗) × B⃗, which is always directed
away from the axis of rotation(x-axis) anywhere in the ball. Thus, positive charge is being pushed
outward and negative inward, resulting in so-called eddy currents forming in the ball(figure 1). This
current density is given by the Ohm’s law,

j⃗ =
1

ρ
(E⃗ + v⃗ × B⃗)

where j⃗ is the current density and ρ ball’s specific resistivity.

Figure 1: Eddy currents in rotating ball

In given problem, this, at the beginning, equals 1
ρ(v⃗×B⃗) = 1

ρrω sin θBŝ (directed away from x-axis)

This means that charge will be relocated, until ∇· j⃗ = 0, when stationary state will be reached. Then
there should be induced electric or/and magnetic field, that would nullify the effect of external field
B. Because f⃗ is directed outward and strongest around equator, we can expect, that positive charge
will be gathered around that area, while negative charge will be piled near the center(figure 2). For
this our initial guess could be, that to outside points, metal ball could act as an electric quadrupole.
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Figure 2: Charge distribution in a rotating ball

We can easily see that ∇ · j⃗ = 0 would be satisfied, when E⃗ would equal −v⃗ × B⃗, so when

E⃗ = −r sin θωBŝ

where ŝ is unit vector directed away from x-axis.

Then calculating potential on the surface of sphere, V = −
∫ (R,θ)
O E⃗ · d⃗l, while setting V = 0 at

r −→ ∞ and then denoting with V0 potential at the center of a sphere, so at the origin, by tracking
the integral first along the x-axis and then directly outward(figure 3), we obtain

V (R, θ) = V0 −
∫ R sin θ

0
−ωBs ds

V (R, θ) = V0 +
1

2
sin2 θR2ωB

We want to know, what is the potential for points outside of the ball - due to the uniqueness
theorem it is determined by potential on the sphere with radius R and the fact, that V vanishes at
large distances. Here we won’t consider any secondary effects of second ball, as their contribution is
neglectable. In order to determine potential in outer region, we need to solve Laplace’s equation,

∇2V = 0

because there is no free charge, again neglecting the second metal ball.
General solution to Laplace’s equation in spherical coordinates is

V =
∞∑
l=0

(Alr
l +

Bl

rl+1
)Pl(cos θ)

where Pl(x) are Legendre polynomials and Al and Bl constant terms specific for each l. Legendre
polynomials are orthogonal functions, therefore

∫ 1
−1 Pm(x)Pn(x) dx ̸= 0 only if m = m, which allows

determining values of coefficients with known potential at boundaries using Fourier’s trick.
With requirement that potential goes to zero at large r, Al must be zero for all l. Also we know

potential at r = R, so

V0 +
1

2
sin2 θR2ωB =

∞∑
l=0

Bl

Rl+1
Pl(cos θ)
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Figure 3: Potential on surface of the ball

We can rewrite the polar angle dependance on the left in terms of Legendre polynomials,

sin2 θ = 1− cos2 θ = 1− 1

3
(2P2(cos θ) + 1))

sin2 θ =
2

3
P0(cos θ)−

2

3
P2(cos θ)

because P0(x) = 1 and P2(x) =
1
2(3x

2 − 1).
So the boundary requirement is then

V0 +
1

2
R2ωB(

2

3
P0(cos θ)−

2

3
P2(cos θ)) =

∞∑
l=0

Bl

Rl+1
Pl(cos θ)

due to the orthogonality all the terms in the sum on the right, that don’t include P0 or P2, can’t have
any influence, thus their Bl is zero. We are left with

(V0 +
1

3
R2ωB)P0(cos θ)−

1

3
R2ωBP2(cos θ) =

B0

R1
P0(cos θ) +

B2

R3
P2(cos θ)

from here we obtain

B0 = R(V0 +
1

3
R2ωB)

B2 = −1

3
R5ωB

and potential for point (r, cos θ) is then

V =
R(V0 +R2ωB)

r
− R5ωB

6r3
(3 cos2 θ − 1)

The first term corresponds to potential due to the single charge in the origin and second to the
potential of perfect electric quadrupole at the origin, however due to the fact, that metal ball is neutral,
there should be no fist term in potential multipole expansion, thus

V0 = −R2ωB
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the ball acts as a electric quadrupole at the origin, with quadrupole electric moment

Q⃗ = −1

6
R5ωB8πϵ0x̂ = −4

3
πϵ0R

5ωBx̂

Then electrical field, along x-axis, equals

E⃗x = − ∂

∂x
V (r = x, θ = 0)

E⃗x = −R5ωB

x4
x̂

At x = L this field equals E⃗L = −R5ωB
L4 x̂ and is constant over the entire second ball. Therefore we

must investigate, what happens to the metal ball in uniform electric field.
The charges in the metal ball, that is placed in the uniform electrical field, are free to move and are

pushed along the field lines, until stationary state is reached. Then, according to Ohm’s law, electric
field induced by dislocated charges should cancel external field, E⃗i = −E⃗, so induced field should also
be constant inside the ball.

This condition is met, where there are two identical balls, one with charge +q and the other with
−q evenly distributed over balls, displaced by tiny distance s⃗(figure 4)). Electrical field inside one ball
is

E⃗ =
qr⃗

4πϵ0R3

therefore field of negative ball at origin and positive at s⃗ is

E⃗ =
q(r⃗ − s⃗)

4πϵ0R3
+

−qr⃗

4πϵ0R3

E⃗ = − qs⃗

4πϵ0R3

E⃗ = − p⃗

4πϵ0R3

which is constant. When s −→ 0 points with r > R perceive balls as point charges in their centers,
which are displaced by s⃗ - electric field for exterior points is the same as the electric field of dipole
moment p⃗ at origin,

E⃗ =
p

4πϵ0r3
(2 cos θr̂ + sin θθ̂)

If the interior field should be canceled,

E⃗ − p⃗

4πϵ0R3
= 0

p⃗ = 4πϵ0R
3E⃗

For the ”outside” metal ball then acts as electric dipole with this dipole moment. If we set E⃗ to
equal E⃗L, we get

p⃗ = −4πϵ0R
8ωB

L4
x̂
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Figure 4: Metal ball in uniform external field

Force, acting on a dipole p⃗ in a electric field E⃗ is

F⃗ = (p⃗∇·)E⃗

since we only have component of dipole along x-axis, this simplifies to

F⃗x =
4πϵ0R

8ωB

L4
R5ωB

∂

∂x

1

x4
x̂

F⃗x = −16πϵ0R
13ω2B2

L4x5
x̂

and finally, the interaction force between balls is

F⃗ = −16πϵ0R
13ω2B2

L9
x̂

We can easily check, that the dimensions are indeed correct and also force is dependant on quantities
as one would expect.
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