
Physics Cup 2025 Problem 1

Siddhaarth Dharani

October 2024

1 Summary

The induced electric field in the rotating sphere is first found using the charge
conservation equation and cylindrical symmetry. Next, due to the symmetry of
the setup we hypothesise that the total field outside the rotating sphere is given
by a linear quadrupole field. This field is then shown to satisfy the required
boundary conditions - by uniqueness, this is the only valid field. Finally, the
method of images is used to evaluate the force between the two spheres.

2 Assumptions

1. The first assumption L >> R tells us that the charge distributions on
one sphere will not affect the charge distributions on the other too much.
This suggests that we can ignore next-to-leading order image charges etc.
Basically, just the leading order term in the interaction force is sufficient.

2. The second assumption R <<
√

ρ
µω allows us to neglect self-induction

effects in the sphere. When the magnetic field is turned on, there will
initially be some changing electromagnetic fields within the sphere, with
timescale τ ∼ 1

ω . However, thanks to the assumption, we can safely as-
sume that in the steady state, all fields permeate the sphere at the given
values without attenuation.

Another way to interpret this assumption would be that, since the ball
is metal and hence has low resistivity (ρ ∼ 10−8 Ωm for most metals),
ω must be very low i.e. ωR << c. Not only does this mean we get to
avoid thinking about relativstic effects, it also means that the magnetic
field inside the sphere will not significantly differ from B as a result of the
induced charge distribution, as we will discuss at the end of Section 4.

3. While we are told that the magnetic field is parallel to the x-axis, it is not
explicitly stated whether the angular velocity vector ω⃗ is oriented parallel
or antiparallel to the x-axis. We will assume in this solution that ω⃗ = ωx̂
(where ω > 0), but we will show that the direction of ω⃗ does not matter
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for this problem (i.e. the interaction force will depend on an even power
of ω).

4. We will solve for a general case where the permittivity of the conduct-
ing sphere is ϵ. We will show that the value of ϵ will not matter when
computing the interaction force.

3 Inside the Rotating Sphere

Figure 1 shows the physical situation. Initially, when the magnetic field is turned
on, the electrons in the rotating sphere experience a Lorentz force −e(v⃗ × B⃗).
e is the elementary charge 1.602 · 10−19 C, v⃗ is the charge velocity and r⃗ is the
position vector from the origin. When the sphere eventually reaches electrostatic
equilibrium, there will be some electric field E⃗in induced inside the sphere,
leading to a charge density ρin = ϵ∇ · E⃗in inside the sphere and some surface
charge density outside. Since the system is symmetric about the x-axis, the
resulting charge distribution must also have this symmetry. Hence, it will be
good to analyze the fields and charge distributions by taking a cross-section
of the sphere as shown in Figure 1, with the x-axis pointing out of the page.
The cylindrical coordinates (r, θ, x) will be used to analyze the fields and charge
distributions.

Figure 1: Top: The physical situation, with the axes and direction of rotation
specified. Bottom: Circular cross section with the x-axis pointing out of the
page; cylindrical coordinates (r, θ, x) are used.

The current density is J⃗ = 1
ρ (E⃗in + v⃗× B⃗) = 1

ρ (E⃗in + ωrB r̂) since the charges

2



cannot move relative to the conductor by the definition of electrostatic equilib-
rium. In the steady state, the charge conservation equation reads

∇ · J⃗ =
1

r

∂(rJr)

∂r
+

1

r

∂Jθ
∂θ

+
∂Jx
∂x

= 0 (1)

Due to cylindrical symmetry, the components of J⃗ cannot depend on θ,
hence the second term vanishes. Because of this, we require Jr = 0 everywhere
inside the sphere. To see this, imagine we have a nonzero Jr at a point (r, θ, x).
Then it is impossible for said current to form a closed loop and flow back to
the original point because for all points with the same r and x, the current flow
will be radially outward or inward (depending on the sign of Jr). Since current,
if any, has to flow in closed loops, this means there cannot be any radial currents.

Equation 1 now reads ∂Jx

∂x = 0, so Jx must be a function of r only. How-
ever, similar to our argument in the previous paragraph, if we have a nonzero
Jx at some point (r, θ, x), it will be impossible for said current to flow in a closed
loop since all points with the same r will have the same Jx. Hence Jx = 0 ev-
erywhere inside the sphere.

Finally, we can conclude that Jθ = 0 by realizing that a nonzero Jθ would
imply a nonzero tangential component of E⃗. However, since the charge distri-
bution is symmetric, ρin cannot depend on θ, and thus the electric potential ϕ
inside the sphere also cannot depend on θ. Hence, there cannot be a tangential
component of E⃗ = −∇ϕ, so Jθ = 0. We have hence shown that there is no
current density anywhere inside the rotating sphere , and so we finally obtain
the electric field inside the sphere:

E⃗in = −(v⃗ × B⃗) = −ωrB r̂ (2)

Hence, the internal charge density is given by

ρin = ϵ∇ · E⃗in = ϵ

(
1

r

∂

∂r
(−ωr2B)

)
= −2ωϵB (3)

Interestingly, ρin does not just have cylindrical symmetry, it is actually uni-
form everywhere inside the sphere!

4 Outside the Rotating Sphere

Since there is negative volume charge density everywhere inside the sphere, there
must be positive surface charge density on the sphere’s surface. Of course, this
surface charge distribution must have cylindrical symmetry, but it must also
be symmetric about the x = 0 plane. To see this, imagine cutting the sphere
into infinitesimally thin slices parallel to the yz plane. The magnetic field and
enclosed internal charge are the same for the slice at x = A and the slice at
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x = −A, where |A| ≤ R. Hence the surface charge distribution must be sym-
metric about the x = 0 plane.

Qualitatively, since the sphere’s total charge (inside charges + outside charges)
must be zero, the sphere must have some kind of internal polarization in a sense.
If we cut the sphere into infinitesimal slices parallel to the yz plane, the slices
at the two ends of the sphere (x = ±R) should end up with a net charge of
some sort, while the slice at the centre of the sphere (x = 0) should have a net
charge of the opposite sign. This motivates a hypothesis that the electric field
outside the sphere is actually a linear quadrupole field! Of course, by symmetry
the quadrupole must be located at the origin. We now need to find the electric
field everywhere and ensure it satisfies the boundary conditions on the sphere’s
surface, namely:

1. The component of the electric field tangential to the sphere’s surface is
continuous. This follows from Maxwell’s equation ∇× E⃗ = −∂B

∂t = 0.

2. The total surface charge at the sphere’s boundary (which can be computed
via Gauss’ Law) plus the negative internal charge must be zero. In other
words, the total surface charge must be 2ωϵB

(
4
3πR

3
)
= 8

3πωϵBR3.

As long as we can find the electric field everywhere and this field satisfies the
boundary conditions, then it is the only valid field. This follows from the unique-
ness of solutions to Laplace’s equation (See Section 6 for a proof). In our case,
outside the sphere the potential V satisfies ∇2V = 0 and the potential at the
sphere’s boundary can be determined from the internal electric field, with an ad-
ditive constant for V (0, 0, 0) that can be determined from the 2 aforementioned
boundary conditions. Hence the conditions for the uniqueness of the solution
are satisfied. If V is unique, then E⃗ is too.

To begin, let us find the electric field due to a linear quadrupole by treating
it as a system of balls of charge Q, −2Q and Q with a small distance d between
adjacent charges. The configuration is illustrated in Figure 2.

Figure 2: We will evaluate the potential at a point (r, θ).

We will work in polar coordinates due to symmetry about the x-axis. The
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electric potential at a point (r, θ), where r >> d, is given by

V =
1

4πϵ0

[
−2Q

r
+

Q

r

(
1 +

d2

r2
− 2d

r
cos θ

)− 1
2

+
Q

r

(
1 +

d2

r2
+

2d

r
cos θ

)− 1
2

]

Carrying out a Taylor expansion and taking the leading order terms gives us

V ≈ Q

4πϵ0r

[
−2 +

(
1− 1

2

(
d2

r2
− 2d

r
cos θ

)
+

3

8

(
d2

r2
− 2d

r
cos θ

)2
)]

+
Q

4πϵ0r

[(
1− 1

2

(
d2

r2
+

2d

r
cos θ

)
+

3

8

(
d2

r2
+

2d

r
cos θ

)2
)]

≈ Q

4πϵ0r

[
−d2

r2
+ 2× 3

8

(
4d2

r2
cos2 θ

)]
=

Qd2

4πϵ0r3
(
3 cos2 θ − 1

)
Now, we compute the electric field outside the sphere due to the quadrupole.
In the polar coordinates that we are using,

E⃗out = −∇V = −∂V

∂r
r̂ − 1

r

∂V

∂θ
θ̂

E⃗out =
3Qd2

4πϵ0r4
(
3 cos2 θ − 1

)
r̂ +

3Qd2 sin θ cos θ

2πϵ0r4
θ̂

Let’s define Qd2 = p as the quadrupole moment. Then we can re-express the
above equation as

E⃗out =
3p

4πϵ0r4
(
3 cos2 θ − 1

)
r̂ +

3p sin θ cos θ

2πϵ0r4
θ̂ (4)

Now we can start verifying the boundary conditions. To do so, let us express
the electric field inside the sphere in terms of our polar coordinates:

E⃗in = −ωrB sin θ(sin θr̂ + cos θθ̂)

Continuity of the tangential component means that, at r = R, we have

−ωRB sin θ cos θ =
3p sin θ cos θ

2πϵ0R4
=⇒ p = −2

3
πϵ0ωBR5 (5)

Notably, our value for p is negative, which means that the ends of the sphere
(at x = ±R) actually have a net negative charge and the centre of the sphere
(at x = 0) actually has a net positive charge. As a sanity check, flipping the di-
rection of either ω or B also flips the charge distribution, changing the polarity
of our quadrupole, so the current equation matches physical intuition.

5



Now let us verify the second boundary condition. Using an infinitely small
Gaussian cylinder at the sphere’s boundary oriented radially, we obtain the
surface charge density σ on the sphere’s surface:

ϵ0Er,out − ϵEr,in = σ =⇒ σ =
3p

4πR4

(
3 cos2 θ − 1

)
+ ϵωRB sin2 θ

Integrating this over the surface of the sphere gives a total surface charge of

Qsurface =

∫ π

0

σ (2πR sin θ) (R dθ)

= 2πR2

∫ π

0

3p

4πR4

(
3 cos2 θ − 1

)
(sin θ) dθ + 2πϵωR3B

∫ π

0

sin3 θ dθ

=
8

3
πωϵBR3

This exactly cancels out the negative charge inside the sphere, and thus the
second boundary condition is satisfied, no matter what the value of ϵ is. This
is therefore the only valid solution for the electric field.

There is one small problem - the surface charges are moving, which can result in
a magnetic field inside the sphere that differs fromB. However, we can show that
the magnetic field generated by the moving charges is negligible using an order
of magnitude estimate. The effective current is I ∼ σR(ωR) ∼ ω2BR3ϵ0, and

hence, the additional field would be Badditional ∼ µ0I
R ∼ µ0ϵ0ω

2BR2 = (ωR)2

c2 B,
which is negligible. Hence we can still assume the magnetic field in the sphere
is B.

5 Interaction Force

Due to the quadrupole field generated by the sphere at x = 0, some charge
distribution will be induced on the conducting sphere at x = L in order for it
to remain an equipotential surface. This allows us to use the method of images
to evaluate the interaction force (See Section 7 for a proof).

There are 4 image charges in the sphere (we will ignore second-order image
charges since L >> R):

1. A charge −Q R
L−d at x = L− R2

L−d .

2. A charge 2QR
L at x = L− R2

L .

3. A charge −Q R
L+d at x = L− R2

L+d .
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4. A charge Q
(

R
L−d + R

L+d − 2R
L

)
≈ 2Rd2

L3 Q at x = L to ensure that the

conductor has zero net charge.

Before we evaluate the interaction force, let us consider the force on the quadrupole
due to a nonuniform electric field. Consider our original quadrupole, with
charges Q at x = ±d and charge −2Q at x = 0. We subject it to a nonuniform
electric field E(x)x̂. Then the force on the quadrupole is

F⃗ =Q [E(−d)− 2E(0) + E(d)] x̂=Qd

[
E(d)− E(0)

d
− E(0)− E(−d)

d

]
x̂

As we take the limit d −→ 0 we obtain

F⃗ = Qd [E′(0)− E′(−d)] x̂ = Qd2E′′(−d) x̂ = pE′′(0) x̂

The field due to the charges can be found by using Coulomb’s Law and expand-
ing to the leading order. We know that there is no net charge on the sphere, so
there should not be an inverse square field. On the other hand, we have some

positive charge at x = L and a net negative charge centered around x = L− R2

L
- a dipole moment. Hence the field should follow an inverse cube law (to leading
order). At x = L− r, r > 0, the field due to the image charges is

E⃗image =
1

4πϵ0

 Q R
L−d(

r − R2

L−d

)2 +
Q R

L+d(
r − R2

L+d

)2 −
2QR

L(
r − R2

L

)2 −
Q 2Rd2

L3

r2

 x̂

=
QR

4πϵ0Lr2

(1 −
d

L

)−1
1 −

R2

(L − d)r

−2

+

(
1 +

d

L

)−1
1 −

R2

(L + d)r

−2

− 2

1 −
R2

Lr

−2

− 2
d2

L2

 x̂

≈
QR

4πϵ0Lr2

1 +
d

L
+

d2

L2

1 +
2R2

(L − d)r

 +

1 −
d

L
+

d2

L2

1 +
2R2

(L + d)r

 − 2

1 +
2R2

Lr

 − 2
d2

L2

 x̂

=
QR

4πϵ0Lr2

 2R2

r

(
1

L − d
+

1

L + d
−

2

L

)
+

2R2d

Lr

(
1

L − d
−

1

L + d

)
+

2R2d2

L2r

(
1

L − d
+

1

L + d

) x̂

≈ QR

4πϵ0Lr2

[
2R2

r

(
2d2

L3

)
+

2R2d

Lr

(
2d

L2

)
+

2R2d2

L2r

(
2

L

)]
x̂

=
QR

4πϵ0Lr2

[
12R2d2

L3r

]
x̂ =

3Qd2R3

πϵ0L4r3
x̂ =

3pR3

πϵ0L4 (L− x)
3 x̂
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This is indeed a dipole field to leading order. taking the second derivative
gives

E′′
image(x) =

36pR3

πϵ0L4 (L− x)
5 =⇒ E′′

image(0) =
36pR3

πϵ0L9

From this, we obtain at last

F⃗rotatingsphere = pE′′
image(0) x̂ =

36p2R3

πϵ0L9
x̂ =

36R3
(
− 2

3πϵ0ωBR5
)2

πϵ0L9
x̂

Simplifying gives us the final answer

F⃗rotating sphere =
16πϵ0ω

2B2R13

L9
x̂ (6)

The interaction force between the two spheres is attractive and has magnitude
16πϵ0ω

2B2R13

L9 .

6 Appendix - The Uniqueness Theorem

Suppose that a given potential function ϕ satisfies the Laplace equation
(
∇2ϕ = 0

)
inside a finite, bounded volume V , and suppose that on the surface S of V we
know the value of ϕ. We will prove by contradiction that only one solution exists
for ϕ. Suppose we have two solutions ϕ1 and ϕ2 that satisfy both conditions.
Define Φ = ϕ1 − ϕ2. Then Φ is 0 on S and ∇2Φ = 0 inside V . Since |∇Φ| ̸= 0
(for otherwise Φ = 0 everywhere in V , which would be a contradiction), let us
evaluate the following integral:∫

V

|∇Φ|2d3r =

∫
V

∇ · (Φ∇Φ) d3r −
∫
V

∇2Φ d3r

The former integral can be expressed as
v

S
(Φ∇Φ) · dA⃗ via the Divergence

Theorem, and hence it vanishes on S. The second integral also vanishes since
Φ satisfies Laplace’s equation in V . Hence, the LHS is nonnegative while the
RHS is zero, which means |∇Φ| = 0 everywhere in V, a contradiction. Hence
there can only be one solution to the potential function ϕ.

7 Appendix - The Method of Images for Spher-
ical Conductors

Consider a grounded spherical conductor centred at x = 0 with radius R. Now
suppose we have a positive charge Q at x = L. We want to find the charge
distribution on the sphere such that all points on its surface are at a potential
of 0V. Just outside the sphere, Laplace’s equation is satisfied as well as there
are no charges. Hence if we can find a valid potential function, it must be the
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correct potential function.

By symmetry, the image charge must be on the x-axis. Suppose it has charge q
and is located at x = d. The conductor does not matter since it is grounded, so
we can just treat it as an arbitrary equipotential surface. Due to the symmetry
we need only consider the two-dimensional case. The potential V at a point
(x, y) is given by

4πϵ0V =
q√

(x− d)2 + y2
+

Q√
(x− L)2 + y2

Equating this to zero and rearranging gives

q√
(x− d)2 + y2

= − Q√
(x− L)2 + y2

=⇒ Q2
(
(x− d)2 + y2

)
= q2

(
(x− L)2 + y2

)
Now we expand:

x2
(
Q2 − q2

)
+ x

(
2q2L− 2Q2d

)
+ y2

(
Q2 − q2

)
+Q2d2 − q2L2 = 0

We want to match this with the express for a circle x2 + y2 = R2 since the
surface with 0 potential needs to be a circle. Comparing coefficients tells us
that

q = −Q

√
d

L
,
q2L2 −Q2d2

Q2 − q2
= R2

Of course, q must be opposite in sign to Q for there to be points with zero
potential that aren’t infinity. Substituting the first equation into the second
equation gives

Q2Ld−Q2d2

Q2
(
1− d

L

) = R2 =⇒ L2d− Ld2 = R2(L− d)

=⇒ Ld2 − (L2 +R2)d+R2L = 0

We solve this to get

d =
(L2 +R2)±

√
(L4 +R4 + 2R2L2 − 4R2L2)

2L
=

L2 +R2 ± (L2 −R2)

2L

The larger root is L, but that corresponds to the charge Q. Hence the x-position

of charge q is given by the smaller root R2

L . Thus, we also have q = −QR
L .

If the conductor is neutral but not grounded, adding an image charge at the
centre of the sphere to make the net charge zero is a valid configuration for the
equipotential surface; by uniqueness, it is the only valid configuration.
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