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1 Electromagnetic Field inside Ball A

Let ball A be the rotating metal ball placed at the origin. It rotates with angular velocity ω = ωx̂ in
a uniform magnetic �eld B = Bx̂. The �elds, the potentials and the current and charge densities can
be calculated as follows1:

Let σc =
1
ρc

be the conductivity of the ball, ρ its charge density and J the current density inside. Now,

J = σc[E + v ×B] and the continuity equation says that ∇ · J = −∂ρ
∂t . Together with Gauss's law,

then:

∇ · J = σc[∇ ·E +∇ · (v ×B)] = σc

[
ρ

ϵ0
+∇ · (v ×B)

]
= −∂ρ

∂t

Since the system is in a steady state (instantaneously at least), ρ is constant and thus,

ρ = −ϵ0∇ · (v ×B)

With v = ω × r, v ×B = −B × (ω × r) = −ω(B · r) + r(B · ω) = ωB(r − xx̂). Then,

ρ = −2ϵ0ωB (1)

So, there appears a uniform volume charge density together with a compensating surface charge density
σ, which will be calculated later. Poisson's equation gives together with ρ,

∇2V = − ρ

ϵ0
= 2ωB

The radial current has to vanish so that no charge leaks o� the ball, so Jr = σc[E+v×B] · r̂ = 0, from
which it follows that Er = −ωB(r−xx̂) · r̂ = −ωB

r (y2+ z2) = −ωBr sin2 θ, where θ denotes the angle

between r and the x-axis. This provides a boundary condition on V , namely, ∂V
∂r |r=R = ωBR sin2 θ.

By the uniqueness theorem, this boundary condition and ρ uniquely determine the electric �eld. In
fact, the following V �ts the required conditions as is easily seen by taking the normal derivative and
the Laplacian,

Vr<R(r, θ) =
ωB

2
r2 sin2 θ + V0 =

ωB

2
(y2 + z2) + V0 (2)

The electric �eld can be found from the negative gradient,

E = −∇V = −ωB(yŷ + zẑ) = −v ×B (3)

There are no eddy currents since the contributions from the electric and magnetic �elds exactly cancel,
so J = 0. The currents due to the rotational motion of the volume and surface charges are negligible2.

1David J. Gri�ths, Introduction to Electrodynamics, Fifth Edition (2023), Example 7.5 p.312
2See appendix: Motivation for Approximations
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2 Electromagnetic Field produced by Ball A outside its boundaries

Ignoring for a moment ball B at x = L, the space outside ball A is empty and thus, Laplace's equation
holds there. Let us �rst show that the potential in this region can be expanded in terms of Legendre
polynomials as follows3:

V (r, θ) =

∞∑
l=0

(
Alr

l +
Bl

rl+1

)
Pl(cos θ) (4)

Since the problem has azimuthal symmetry, V only depends on r and θ, so Laplace's equation reduces
to

∂

∂r

(
r2

∂V

∂r

)
+

1

sin θ

∂

∂θ

(
sin θ

∂V

∂θ

)
= 0 (5)

One can try looking for separable solutions of the form V (r, θ) = R(r)Θ(θ). Putting this V into Eq.(5)
and dividing by V yields

1

R

d

dr

(
r2

dR

dr

)
+

1

Θ sin θ

d

dθ

(
sin θ

dΘ

dθ

)
= 0

Since each one of the two terms only depends on one of both variables r and θ, both must be a
constant and its opposite respectively. The constant is most conveniently written as l(l + 1). The
radial equation d

dr (r
2 dR
dr ) = l(l + 1)R has as solution R(r) = Arl + B

rl+1 with two constants A and B,
as can be checked by plugging R(r) back into the equation. The solutions to the angular equation
d
dθ (sin θ

dΘ
dθ ) = −l(l + 1) sin θΘ are Legendre polynomials in the variable cos θ, the three �rst of whom

are listed below:

P0(cos θ) = 1

P1(cos θ) = cos θ

P2(cos θ) =
3 cos2 θ − 1

2
= 1− 3

2
sin2 θ

The second solution to the second order di�erential angular equation blows up at θ = 0 and/or at
θ = π and can therefore be rejected. A linear combination of R(r)Θ(θ) over all values of l gives Eq.(4).

Now, Al and Bl have to be determined by matching Eq.(4) to Eq.(2) at the surface of ball A4. First
of all, V → 0 as r → ∞, so Al = 0. It works out with Bl = 0 except for l = 0 and l = 2 and, by the
uniqueness theorem, this gives the only right potential. So,

Vr>R(r, θ) =
B0

r
+

B2

r3

(
1− 3

2
sin2 θ

)
Comparing with Eq.(2) at r = R, B2 = −ωBR5

3 and B0
R − ωBR2

3 = V0 and thus B0 = V0R+ ωBR3

3 .

Vr>R(r, θ) = V0
R

r
+

ωB

3

(
R3

r
− R5

r3
+

3R5

2r3
sin2 θ

)
(6)

3David J. Gri�ths, Introduction to Electrodynamics, Fifth Edition (2023), Section 3.3.2 p.139
4Kirk T. McDonald, Conducting Sphere That Rotates in a Uniform Magnetic Field, Princeton University (2002)
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By determining the total surface charge from Eq.(6) and Eq.(2) and by equating it to the opposite of
the total volume charge (the ball is neutral as a whole), V0 can be determined. Using the boundary
condition of an electric �eld at a surface charge (Gaussian pillbox),

∂Vr>R

∂r

∣∣
r=R

− ∂Vr<R

∂r

∣∣
r=R

= − σ

ϵ0

The derivatives are:

∂Vr>R

∂r

∣∣
r=R

= −V0

R
+

ωB

3

(
−R+ 3R− 3

3R

2
sin2 θ

)
= −V0

R
+

ωBR

3

(
2− 9

2
sin2 θ

)
∂Vr<R

∂r

∣∣
r=R

= ωBR sin2 θ

Thus,

−V0

R
+

ωBR

3

(
2− 9

2
sin2 θ

)
− ωBR sin2 θ = − σ

ϵ0

σ =
ϵ0V0

R
+ ϵ0ωBR

(
5

2
sin2 θ − 2

3

)
(7)

Integrating over the surface of the ball gives the total surface charge:

QS =
ϵ0V0

R
· 4πR2 + ϵ0ωBR · 2πR2

(
5

2
· 4
3
− 2

3
· 2
)

= 4πϵ0V0R+ 4πϵ0ωBR3

The total volume charge is QV = −2ϵ0ωB · 4
3πR

3 = −8
3πϵ0ωBR3. The ball is neutral, so QS = −QV

which gives V0 = −ωBR2

3 . This allows to �nd the potential outside the ball as well as its surface charge
density,

Vr>R(r, θ) = −ωBR3

3r
+

ωB

3

(
R3

r
− R5

r3
+

3R5

2r3
sin2 θ

)
= −ωBR5

3r3

(
1− 3

2
sin2 θ

)
(8)

σ = ϵ0ωBR

(
5

2
sin2 θ − 1

)
(9)

Finally, taking the opposite of the gradient of the potential yields the electric �eld outside ball A:

Er,r>R = −ωBR5

r4

(
1− 3

2
sin2 θ

)
Eθ,r>R = −ωBR5

2r4
sin(2θ)

(10)

3 Equivalent Charge Con�guration in Ball A

The electric �eld created by ρ and σ induces an image charge con�guration in ball B which is placed
at x = L ≫ R. To simplify calculations, it is worth noting that ρ and the θ-independent part of σ are
equivalent to an e�ective point charge qV placed at the centre of ball A, by their angular symmetry
and by Gauss's law. Furthermore, the sin2 θ term in σ describes a charge accumulation around the
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y-z-plane passing through the centre of ball A. Therefore, for points far from ball A, this term can be
approximated by a charged ring of radius γR < R in the same plane, its centre coinciding with the
centre of ball A.

Integrating the θ-independent term of σ over the surface of ball A and adding QV gives qV ,

qV = −8

3
πϵ0ωBR3 − ϵ0ωBR · 4πR2 = −20

3
πϵ0ωBR3 (11)

The total charge of the ring turns of course out to be −qV by the same integration over the surface,

qS =
5

2
ϵ0ωBR · 2πR2 · 4

3
=

20

3
πϵ0ωBR3 (12)

The electric �eld of the charged ring on the positive x-axis is easily determined since it has only an
x-component because of symmetry:

EqS =
qS
4πϵ0

· 1

x2 + (γR)2
· cos θ′x̂

=
qS
4πϵ0

· x

[x2 + (γR)2]
3
2

x̂

The combined �eld of qV and qS on the positive x-axis is,

EqV ,qS =
qV
4πϵ0

· 1

x2
x̂+

qS
4πϵ0

· x

[x2 + (γR)2]
3
2

x̂

=
5ωBR3

3

[
− 1

x2
+

x

[x2 + (γR)2]
3
2

]
x̂

(13)

Expanding this result to �rst order in powers of
(
γR
x

)2
reveals that for large x,

EqV ,qS ≈ 5ωBR3

3

[
− 1

x2
+

1

x2
− 1

x2
· 3
2

(
γR

x

)2
]
x̂

= −5ωBR5

2x4
γ2x̂

Comparing this result to Er,r>R in Eq.(10) with θ = 0 gives γ =
√

2
5 .

4 Image of a Charge outside a Conducting Ball

First consider the following general calculation of the image charge q′ appearing due to a charge q
placed a distance a from the centre of a grounded conducting ball of radius R at the origin. (Figure 1)

The potential created by this con�guration is V (r) = 1
4πϵ0

(
q
d + q′

d′

)
. For points on the surface, V = 0.

In particular, at r = −Rx̂ and at r = Rx̂,

V (−Rx̂) =
1

4πϵ0

(
q

a+R
+

q′

b+R

)
= 0

V (Rx̂) =
1

4πϵ0

(
q

a−R
+

q′

R− b

)
= 0
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d

d′r

x̂

a

bθ

O q′

P

q

Figure 1: Image Charge q′ in Conducting Grounded Ball due to Charge q outside

This system of equations can easily be solved to get b and q′:

b =
R2

a

q′ = −R

a
q

(14)

With

d =
√
R2 + a2 − 2Ra cos θ

d′ =
√

R2 + b2 − 2Rb cos θ =

√
R2 +

R4

a2
− 2

R3

a
cos θ =

R

a

√
a2 +R2 − 2Ra cos θ

the potential at the surface of the ball is V (R) = 1
4πϵ0

(
q√

R2+a2−2Ra cos θ
+

−R
a
q

R
a

√
a2+R2−2Ra cos θ

)
!
= 0

which con�rms by the uniqueness theorem that Eq.(14) gives the right parameters.

If the ball is not grounded, charge has to be conserved. Therefore, an additional point charge has to
be placed at the centre of the ball to make it neutral again. Since the �eld of the charge is radial, it
doesn't destroy the boundary condition at the surface of the ball.

5 Induced Image Charge Con�guration in Ball B

From Eq.(14), it follows that the image charge qVIm
of qV is placed at xVIm

= L−∆xVIm
where,

qVIm
= −R

L
qV =

20

3
πϵ0ωB

R4

L

∆xVIm
=

R2

L

(15)

Since, by symmetry, each piece of charge of qS is subject to the same transformation to get to its
image, the total transforms in the same way. The image of the charged ring is again a charged ring of
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radius γ′R which lies in the y-z-plane and whose centre is placed at xSIm
= L−∆xSIm

.

qSIm
= − R√

L2 + (γR)2
qS = −20

3
πϵ0ωB

R4√
L2 + (γR)2

∆xSIm
=

R2√
L2 + (γR)2

· cos θ′ = LR2

L2 + (γR)2

γ′ =
R√

L2 + (γR)2
· sin θ′ = R2

L2 + (γR)2
≪ 1

(16)

Since the initially neutral ball B is not grounded, it has to stay neutral by conservation of charge.
Therefore, an additional image charge qCIm

has to be placed at its centre at xCIm
= L with,

qCIm
= −(qVIm

+ qSIm
)

=
20

3
πϵ0ωBR4

[
1√

L2 + (γR)2
− 1

L

]
(17)

As is shown in the appendix, the e�ect of these image charges on the mechanism creating ρ and σ is
negligible.

6 Interaction Force between both Balls

The approach is to expand the force on qVIm
, qSIm

and qCIm
in powers of R

L and to keep only the lowest
order term since R ≪ L. The combined �eld of qV and qS on the x-axis is given by Eq.(13). This
expression can also be used for qSIm

since γ′ ≪ 1, which is equal to treating it as a point charge.
The force on qCIm

has the following magnitude,

FCIm
=

20

3
πϵ0ωBR4

[
1√

L2 + (γR)2
− 1

L

]
· 5ωBR3

3

[
− 1

L2
+

L

[L2 + (γR)2]
3
2

]

=
100

9
πϵ0ω

2B2R
7

L3

[
−1

2

(
γR

L

)2

+
3

8

(
γR

L

)4

− ...

]
[
−3

2

(
γR

L

)2

+
15

8

(
γR

L

)4

− ...

]

=
100

9
πϵ0ω

2B2R
7

L3

[
3

4

(
γR

L

)4

− 15

16

(
γR

L

)6

− 9

16

(
γR

L

)6

+ ...

]

=
4πϵ0
3

· ω
2B2R11

L7
− 16πϵ0

15
· ω

2B2R13

L9
+ ...

The force on qVIm
has the magnitude,

FVIm
=

20

3
πϵ0ωB

R4

L
· 5ωBR3

3

− 1

x2VIm

+
xVIm[

x2VIm
+ (γR)2

] 3
2





7

=
100

9
πϵ0ω

2B2R
7

L

[
− 1

x2VIm

+
1

x2VIm

− 1

x2VIm

· 3
2

(
γR

xVIm

)2

+
1

x2VIm

· 15
8

(
γR

xVIm

)4

− 1

x2VIm

· 35
16

(
γR

xVIm

)6

+ ...

]

=
100

9
πϵ0ω

2B2R
7

L3

[
−3

2

(
γR

L

)2
(
1 + 4

(
R

L

)2

+ 10

(
R

L

)4

+ ...

)
+

15

8

(
γR

L

)4
(
1 + 6

(
R

L

)2

+ ...

)

−35

16

(
γR

L

)6

(1 + ... ) + ...

]

=
100

9
πϵ0ω

2B2R
7

L3

[
−3

2

(
γR

L

)2

− 6γ2
(
R

L

)4

+
15

8

(
γR

L

)4

− 15γ2
(
R

L

)6

+
45

4
γ4
(
R

L

)6

− 35

16

(
γR

L

)6

− ...

]

= −20πϵ0
3

· ω
2B2R9

L5
− 70πϵ0

3
· ω

2B2R11

L7
− 434πϵ0

9
· ω

2B2R13

L9
− ...

Finally, the force on qSIm
is of magnitude,

FSIm
= −20

3
πϵ0ωB

R4√
L2 + (γR)2

· 5ωBR3

3

− 1

x2SIm

+
xSIm[

x2SIm
+ (γR)2

] 3
2


= −100

9
πϵ0ω

2B2R
7

L

[
1− 1

2

(
γR

L

)2

+
3

8

(
γR

L

)4

− ...

]
[
− 1

x2SIm

+
1

x2SIm

− 1

x2SIm

· 3
2

(
γR

xSIm

)2

+
1

x2SIm

· 15
8

(
γR

xSIm

)4

− 1

x2SIm

· 35
16

(
γR

xSIm

)6

+ ...

]

= −100

9
πϵ0ω

2B2R
7

L3

[
1− 1

2

(
γR

L

)2

+
3

8

(
γR

L

)4

− ...

]
[
−3

2

(
γR

L

)2
(
1 + 4

∆xSIm

L
+ 10

(
∆xSIm

L

)2

+ ...

)
+

15

8

(
γR

L

)4(
1 + 6

∆xSIm

L
+ ...

)

−35

16

(
γR

L

)6

(1 + ... ) + ...

]

= −100

9
πϵ0ω

2B2R
7

L3

[
1− 1

2

(
γR

L

)2

+
3

8

(
γR

L

)4

− ...

]
[
−3

2

(
γR

L

)2
(
1 + 4

(
R

L

)2
(
1−

(
γR

L

)2

+ ...

)
+ 10

(
R

L

)4

(1− ... ) + ...

)

+
15

8

(
γR

L

)4
(
1 + 6

(
R

L

)2

(1− ... ) + ...

)

−35

16

(
γR

L

)6

(1 + ... ) + ...

]
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= −100

9
πϵ0ω

2B2R
7

L3

[
−3

2

(
γR

L

)2

− 3

2

(
γR

L

)2

· 4
(
R

L

)2

+
15

8

(
γR

L

)4

+
1

2

(
γR

L

)2

· 3
2

(
γR

L

)2

+
3

2

(
γR

L

)2

· 4
(
R

L

)2

·
(
γR

L

)2

− 3

2

(
γR

L

)2

· 10
(
R

L

)4

+
15

8

(
γR

L

)4

· 6
(
R

L

)2

− 35

16

(
γR

L

)6

+
1

2

(
γR

L

)2

· 3
2

(
γR

L

)2

· 4
(
R

L

)2

− 1

2

(
γR

L

)2

· 15
8

(
γR

L

)4

− 3

8

(
γR

L

)4

· 3
2

(
γR

L

)2

− ...

]

=
20πϵ0
3

· ω
2B2R9

L5
+ 22πϵ0 ·

ω2B2R11

L7
+

1498πϵ0
45

· ω
2B2R13

L9
+ ...

In the appendix, it is shown that the force due to image charges induced in ball A by qVIm
, qSIm

and
qCIm

is negligible since R ≪ L. Therefore, the force on ball B is,

FB = FCIm
+ FVIm

+ FSIm

=

(
4πϵ0
3

· ω
2B2R11

L7
− 16πϵ0

15
· ω

2B2R13

L9
+ ...

− 20πϵ0
3

· ω
2B2R9

L5
− 70πϵ0

3
· ω

2B2R11

L7
− 434πϵ0

9
· ω

2B2R13

L9
− ...

+
20πϵ0
3

· ω
2B2R9

L5
+ 22πϵ0 ·

ω2B2R11

L7
+

1498πϵ0
45

· ω
2B2R13

L9
+ ...

)
x̂

= −16πϵ0
ω2B2R13

L9
x̂

So, the interaction force between both balls acts along the x-axis, is attractive and has the magnitude,

F = 16πϵ0
ω2B2R13

L9
(attractive) (18)
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7 Appendix: Calculation of the Interaction Force based on Dipole

Induction

Ball B is placed at x = L ≫ R, so for points close to or inside Ball B, sin θ ≈ 0 and variations in r of
the order of R can be neglected. Therefore, the electric �eld of ball A can be assumed to be uniform
at ball B. Calling this uniform �eld EA,0, from Eq.(10),

EA,0 = −EA,0x̂ = −ωBR5

L4
x̂ (19)

Ball B is a conductor at rest, its surface is an equipotential and thus, charges will be induced on it in
order to keep the potential constant over the surface. The in�uence of the surface charges on the outer
�eld can be modelled by placing a point dipole pB = −pBx̂ in its centre. Let r′ denote the distance
from the centre of ball B and let V ′ = 0 in the y-z-plane passing through the centre of ball B for
points close to it. Then, the potential is

V ′(r′, θ′) = x′EA,0 −
1

4πϵ0

pB cos θ′

r′2
= cos θ′

(
r′EA,0 −

1

4πϵ0

pB
r′2

)
Since the surface of the ball is an equipotential, V ′(r′ = R, θ′) = 0, so

pB = 4πϵ0R
3EA,0 = 4πϵ0

ωBR8

L4
(20)

Even if the surface of ball A is no equipotential (see Eq.(2)), it can be treated as one with V = 0 for
placing the image charges, because by the superposition principle, charges in ball A rearrange until
they compensate for the tangential component of the �eld produced by pB at the surface of ball A.
Else, they would continue rearranging until they do so.

Ball B is placed at x = L ≫ R, so for points close to or inside Ball A, sin θ′ ≈ 0 and variations in r′

of the order of R can be neglected. Therefore the �eld from pB is approximately uniform around ball
A. The electric �eld of a dipole at the origin is5

Edip(r, θ) =
1

4πϵ0r3
[3(p · r̂)r̂ − p] (21)

So, close to ball A,

EpB ≈ − pB
2πϵ0(L− r)3

x̂ = − 2ωBR8

L4(L− r)3
x̂

With L − r ≈ L, EpB ≈ −2ωBR8

L7 x̂. In the same way as above, pA points in the negative x-direction
and is given by,

pA = 4πϵ0R
3EpB = 8πϵ0

ωBR11

L7

Thus, each image dipole gets another factor of 2
(
R
L

)3
, so that the correction to pB is p′B = 4

(
R
L

)6
pB

which can be neglected since R ≪ L and the image series truncates. Since pA ≪ pB and since the

5David J. Gri�ths, Introduction to Electrodynamics, Fifth Edition (2023), Eq.(3.104) p.156
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�eld produced by pB at ball A is much smaller than Er,r>R, the force between pA and pB can be
neglected compared to the force of Er,r>R on pB. In the same way, this shows that it was justi�ed not
to consider the force with the image charges induced in ball A by qVIm

, qSIm
and qCIm

.

The interaction force between ball A and ball B is equal to the force of Er,r>R on pB (the θ-dependence
of the radial �eld and the θ-component can be neglected). The force on a dipole is6 F = F+ + F− =
q(∆E) and ∆E = (d ·∇)E, so F = (p ·∇)E or, since p is constant, F = ∇(p ·E). Thus,

FB = ∇(pB ·Er,r>R)|r=L, θ=0 = ∇
(
4πϵ0

ωBR8

L4

ωBR5

r4

)∣∣
r=L, θ=0

= −16πϵ0
ω2B2R13

L9
x̂

This exactly reproduces the initial result.

8 Appendix: Motivation for Approximations

8.1 Neglecting the Convection Current due to ρ and σ in Ball A

The current density due to the rotating volume charge is Jρ = −2ϵ0ωBω× r, so Jρ = −2ϵ0ω
2Br sin θ.

The current density due toB and the rotation alone (which is cancelled by the current density due to the

electric �eld) is Jrotation = σcv×B, so Jrotation = σcωBr sin θ. Comparing both gives
Jρ

Jrotation
= −2ϵ0ω

σc
.

For most metals, σc ≈ 107 1
Ωm . So,

Jρ
Jrotation

≈ −ω · 10−18s. Thus the volume charge current as well as
the surface charge current, which is of the same order of magnitude, can be neglected since ω would

have to be on the order of 1018 1s for the ratio to be 1. Since R ≪
√

ρc
µ0ω

, R would have to be much

smaller than 10−10m - so much smaller than an atom. Then we can't talk about a metal ball anymore...

The magnetic �eld7 inside a spherical shell of uniform surface charge density σ is 2
3µ0σRω. While σ isn't

uniform in this problem, the expression is su�cient to consider orders of magnitude. Furthermore, ρ can
be divided into spherical shells, so that for both densities, taking σ = ϵ0ωBR gives a good estimation.
So the magnetic �eld Bρ,σ created by the rotating charge densities is of the order of (ωRc )2B (c = speed

of light). Since R ≪
√

ρc
µ0ω

, ωR2 ≪ 1
σcµ0

and Bρ,σ ≪ ω
σcµ0c2

B = ϵ0ω
σc

B. As shown above, the factor
ϵ0ω
σc

alone is already negligibly small. The change in current density J ′ created by Bρ,σ is much smaller

than Jρ, which is already negligible on its own: J ′ is of the order of (ωRc )2B · σcωR and dividing it by

the order of Jρ (which is ϵ0ω
2BR) gives

(
R√
ρc
µ0ω

)2

which is negligible by assumption.

8.2 In�uence of pB on the Mechanism creating Er,r>R

First of all, the surface charge density σpB induced by pB on ball A can be compared to σ produced
on its own, Eq.(9). The �eld created by pA is given by Eq.(21):

EpA(r, θ) =
pA

4πϵ0r3
[−3 cos θr̂ + x̂] = −3pA cos θ

4πϵ0r3
r̂ +

2ωBR11

L7r3
x̂ (22)

6David J. Gri�ths, Introduction to Electrodynamics, Fifth Edition (2023), Eq.(4.5) p.170
7David J. Gri�ths, Introduction to Electrodynamics, Fifth Edition (2023), Eq.(5.70) p.246; I'm not going to derive

this result, since it takes quite a lot of algebra while it isn't necessary to justify that the e�ect of the moving charge
densities can be neglected. This is already shown with the currents and the considerations with the magnetic �eld created
by those currents are only meant as additional insight.
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The total �eld at r = R due to pA and pB is then the sum of EpA as given by Eq.(22) with r = R and

of EpB ≈ −2ωBR8

L7 x̂: EpA,pB = −6ωBR8

L7 cos θr̂. It follows that the induced surface charge density is

σpA,pB = −6ϵ0
ωBR8

L7
cos θ (23)

Comparing σpA,pB to Eq.(9), reveals that the e�ect of the dipoles can be neglected:

σpA,pB

σ
=

−6ϵ0
ωBR8

L7 cos θ

ϵ0ωBR
(
5
2 sin

2 θ − 1
) ≈ (

R

L
)7 ≪ 1 for most θ (24)

Since σpA,pB ≪ σ the current due to its rotation can be neglected as well. Furthermore, since ball
A rotates in the direction in which the dipole is induced, no charges have to �ow in order to keep
cancelling EpB inside the ball. So there will be no additional current.

Even if EpB were not expelled from the interior of the ball by σpA,pB , it would have no e�ect since
compared to the inner electric �eld Eq.(3), it is negligible:

EpB

Ein
≈ (

R

L
)7 ≪ 1
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