Physics Cup 2025 - Problem 1

Moritz Rohner

1 Electromagnetic Field inside Ball A

Let ball A be the rotating metal ball placed at the origin. It rotates with angular velocity w = w® in
a uniform magnetic field B = B&. The fields, the potentials and the current and charge densities can
be calculated as follows!:

Let 0. = ;Tlc be the conductivity of the ball, p its charge density and J the current density inside. Now,

J = 0.[E + v x B] and the continuity equation says that V - J = —%. Together with Gauss’s law,
then:

V'J:UC[V'E+V'(UXB)]:UC €£+V'(’UXB) :_gi
0

Since the system is in a steady state (instantaneously at least), p is constant and thus,
p=—6V:(vxB)
Withv=wxr,vxB=-BX (wxr)=-w(B-r)+7r(B- -w)=wB(r—azz). Then,
p = —2€wB (1)

So, there appears a uniform volume charge density together with a compensating surface charge density
o, which will be calculated later. Poisson’s equation gives together with p,

vV =L —ouB
€0
The radial current has to vanish so that no charge leaks off the ball, so J, = o.[E+v x B]-7 = 0, from
which it follows that E, = —wB(r —a@) -7 = —22(y? + 2?) = —wBrsin? 6, where 0 denotes the angle
between r and the x-axis. This provides a boundary condition on V', namely, %—‘ﬂr: r = wBRsin? 4.
By the uniqueness theorem, this boundary condition and p uniquely determine the electric field. In
fact, the following V fits the required conditions as is easily seen by taking the normal derivative and

the Laplacian,

B B
Vicr(r,0) = Sor%sin® 6+ Vo = S (57 +2%) + Vo @)

The electric field can be found from the negative gradient,
E=-VV=—-wByy+z2z2)=-vxB (3)

There are no eddy currents since the contributions from the electric and magnetic fields exactly cancel,
so J = 0. The currents due to the rotational motion of the volume and surface charges are negligible?.

'David J. Griffiths, Introduction to Electrodynamics, Fifth Edition (2023), Example 7.5 p.312
2See appendix: Motivation for Approximations



2 Electromagnetic Field produced by Ball A outside its boundaries

Ignoring for a moment ball B at x = L, the space outside ball A is empty and thus, Laplace’s equation
holds there. Let us first show that the potential in this region can be expanded in terms of Legendre

polynomials as follows?:
[e.9]

V(r,0) = Z (Alrl + rlB+l1> Py(cos ) (4)
1=0

Since the problem has azimuthal symmetry, V only depends on r and 6, so Laplace’s equation reduces

to
0 90V 1 0 1% _
or <T ar> T Sn000 (Smeae> =0 (5)

One can try looking for separable solutions of the form V (r,6) = R(r)©(f). Putting this V into Eq.(F)

and dividing by V yields
1d /[ 4dR 1 d /. do
Rar < c'lr) T Gsmodd <Sm9de) =0

Since each one of the two terms only depends on one of both variables r and 6, both must be a
constant and its opposite respectively. The constant is most conveniently written as (I + 1). The

radial equation - (r?9%) = (I + 1)R has as solution R(r) = Ar! + rl% with two constants A and B,
as can be checked by plugging R(r) back into the equation. The solutions to the angular equation
%(sin 9%) = —I(l + 1) sin O are Legendre polynomials in the variable cosf, the three first of whom

are listed below:

Py(cosh) =1
Py (cos @) = cosb

3cos?f — 1 3
Py(cos ) = % =1- §sin29

The second solution to the second order differential angular equation blows up at # = 0 and/or at
¢ = 7 and can therefore be rejected. A linear combination of R(r)©(6) over all values of [ gives Eq.({]).

Now, A; and B; have to be determined by matching Eq. to Eq. at the surface of ball A*. First
ofall, V.— 0asr — oo, so A; = 0. It works out with B; = 0 except for [ = 0 and [ = 2 and, by the
uniqueness theorem, this gives the only right potential. So,

B B 3
‘/7‘>R(r> 9) — 70 + 732 <1 — 5 Sin2 0)

Comparing with Eq. at r =R, By = —“’%Rs and % — ‘”B3RQ = Vy and thus By = VR + %}33.

B 3 5 5
R w <R R® 3R in20> ©)

o n(r0) = Vo + 22 _47 L o
Visgr(r,0) VO?“+ 7“3+27“35

3 T

*David J. Griffiths, Introduction to Electrodynamics, Fifth Edition (2023), Section 3.3.2 p.139
*Kirk T. McDonald, Conducting Sphere That Rotates in a Uniform Magnetic Field, Princeton University (2002)



By determining the total surface charge from Eq.@ and Eq. and by equating it to the opposite of
the total volume charge (the ball is neutral as a whole), Vj can be determined. Using the boundary
condition of an electric field at a surface charge (Gaussian pillbox),

(o)

6Vr>R| _ aVr<R’ _ Y
Or Ir=R or r=R ¢

The derivatives are:

ViR Vo wB 3R . 5 Vo wBR 9 o
= Lﬂz—§4~§——R+M%ﬂzﬂme =-g g (2 gsin®0
6‘/1"<R .92
g ‘r:R = wBRsin” 6
Thus,
% BR 9
—EO + WT (2 - isin2 9) — wBRsin? 4 = —%
% 5 2
o= 60R0 + eowBR (2 sin? 6 — 3) (7)
Integrating over the surface of the ball gives the total surface charge:
\% 5 4 2
QS::QEO-4WR2+fmuBR-2wR2(2-3——3-2)
= dnegVoR + 4meqwBR?
The total volume charge is Qy = —2¢ywB - %TFR?’ = —gweowBRS. The ball is neutral, so Qg = —Qy
which gives V) = —%RZ. This allows to find the potential outside the ball as well as its surface charge

density,

‘/T'>R(T7 0) = -

wBR® wB <R?’ R> 3R® o2 9) B _wBR5 ( 3

L 1- Zsin2g 8
3r + 3 r 73 + 273 S 3r3 2s1n ) (8)

o =ewBR (2 sin? 9 — 1) (9)

Finally, taking the opposite of the gradient of the potential yields the electric field outside ball A:

BR®
E.,~r= —wr4R (1 — ;sin2 0)

10
wBR? (10)

E@,T>R = —W SIH(QQ)

3 Equivalent Charge Configuration in Ball A

The electric field created by p and ¢ induces an image charge configuration in ball B which is placed
at x = L > R. To simplify calculations, it is worth noting that p and the #-independent part of o are
equivalent to an effective point charge qy placed at the centre of ball A, by their angular symmetry
and by Gauss’s law. Furthermore, the sin?# term in o describes a charge accumulation around the



y-z-plane passing through the centre of ball A. Therefore, for points far from ball A, this term can be
approximated by a charged ring of radius yR < R in the same plane, its centre coinciding with the
centre of ball A.

Integrating the #-independent term of o over the surface of ball A and adding Qv gives gy,

8 20
qy = —gﬁeowBR?’ — eowBR - 47R? = —Eﬂ'eowBRg (11)
The total charge of the ring turns of course out to be —gy by the same integration over the surface,
5 4 20
qs = §EQQJBR .27 R?. 3= gﬂeowBR?’ (12)

The electric field of the charged ring on the positive z-axis is easily determined since it has only an
x-component because of symmetry:

qs /A
E, = . -cosb'x
15 4mey 22+ (YR)?
qs € &

Njw

AT 2t Ry

The combined field of gy and gg on the positive z-axis is,

1
EQVQSZQL'ﬁi+ qS . x 3§j
’ dmey x 4meg [22 + (YR)?]2
13
5wBR? | 1 N T . (13)
= —_ B — xr
3 2 22 4 (yR)2]2

2
Expanding this result to first order in powers of (%) reveals that for large x,

_BwBRP| 1 1 1 3 (yR\?|.
Bavas ® =3 1"@ =22 \w
5wBR® 5.
= xTr
224

Comparing this result to E, ,~r in Eq. with 0 = 0 gives v = \/g

4 TImage of a Charge outside a Conducting Ball

First consider the following general calculation of the image charge ¢’ appearing due to a charge ¢
placed a distance a from the centre of a grounded conducting ball of radius R at the origin. (Figure

The potential created by this configuration is V(r) = 477160 (% + %:). For points on the surface, V = 0.
In particular, at r = —R& and at r = Rax,
. 1 q q
V(—Rz) = =0
(-F2) dreg <a+R+b+R>
A 1 q q
V(Rx) = =0
(F2) 4ﬂ60<a—R+R—b>



q a

Figure 1: Image Charge q' in Conducting Grounded Ball due to Charge q outside

This system of equations can easily be solved to get b and ¢

2
b=
aR (14)
¢ =-—q
a

With

d=+R2+ a2 —2Racosb

1 3
d =+/R2+ b2 — 2Rbcost = \/RQ—i—RZ —2R—cos0: E\/a2+R2 — 2Ra cos 0
a a a

_R |
the potential at the surface of the ball is V(R) = ﬁ \/R2+a2E2RaCOSa + R’\/a2+R2aq2Rac059> =0

which confirms by the uniqueness theorem that Eq. gives the right parameters.

If the ball is not grounded, charge has to be conserved. Therefore, an additional point charge has to
be placed at the centre of the ball to make it neutral again. Since the field of the charge is radial, it
doesn’t destroy the boundary condition at the surface of the ball.

5 Induced Image Charge Configuration in Ball B

From Eq.(14)), it follows that the image charge qy;, of qv is placed at xy;, = L — Axy; where,

R 20 R*

qVIm ——qy = fﬂ'Gowa
R2
Azy, I

Since, by symmetry, each piece of charge of ¢g is subject to the same transformation to get to its
image, the total transforms in the same way. The image of the charged ring is again a charged ring of



radius 7R which lies in the y-z-plane and whose centre is placed at zg, = L — Azg,, .

R 20 R*
4s, = ——F—————=(s = — 5 MWL ————
L%+ (YR)? 3 L%+ (yR)?
R2 LR?
A(L‘ :—-cosé’:i 16
STm L? + (’}/R)2 L2+ (7R)2 ( )
R R?
A VY S — |
T I+ OR) L2 + (YR)?

Since the initially neutral ball B is not grounded, it has to stay neutral by conservation of charge.
Therefore, an additional image charge gc;,, has to be placed at its centre at x¢,,, = L with,

qCIm = _(q‘/lm + qSIm)
20 1 1 17
—weowBR (17)
VIZ+ (yR)? + (vR)? L

As is shown in the appendix, the effect of these image charges on the mechanism creating p and o is
negligible.

6 Interaction Force between both Balls

The approach is to expand the force on qy;_, ¢s,,, and qc¢,,, in powers of % and to keep only the lowest
order term since R < L. The combined field of gy and gg on the z-axis is given by Eq.. This
expression can also be used for ¢g,  since 4/ < 1, which is equal to treating it as a point charge.

The force on q¢;,, has the following magnitude,

20
FCIm = 7T60LUBR4

The force on gy;,, has the magnitude,

20 R* 5wBR3 1
Py, = —mewB— - hd + TVim
CUVI + (vR)?

Njw

3 L 3 x%/lm
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Finally, the force on gg,, is of magnitude,
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In the appendix, it is shown that the force due to image charges induced in ball A4 by gy, gs,,, and
qcy,, is negligible since R < L. Therefore, the force on ball B is,

Fp = Fg,, + Fy,, + Fys,,

([ Ameo Ww?B?R"  16mey w?B?R'Y
_<3' T 15 T
20mey w?B2?R%  T0mey w?B2?RY  434mey w?B?R'Y
3 s 3 Lt 9 LY
20mey w?B2?R? W?B2RM 14987meg w?B2R .
5 5 + 227eg - 7 + I . 70 + )a:
22 P13
:—16W60%i}

So, the interaction force between both balls acts along the z-axis, is attractive and has the magnitude,

2p2R13
% (attractive) (18)

F = 167¢g




7 Appendix: Calculation of the Interaction Force based on Dipole
Induction

Ball B is placed at x = L > R, so for points close to or inside Ball B, sinf ~ 0 and variations in r of
the order of R can be neglected. Therefore, the electric field of ball A can be assumed to be uniform
at ball B. Calling this uniform field E, o, from Eq.7

wBR® |
— 3

- (19)

Eao=—Epot =—
Ball B is a conductor at rest, its surface is an equipotential and thus, charges will be induced on it in
order to keep the potential constant over the surface. The influence of the surface charges on the outer
field can be modelled by placing a point dipole pg = —pp® in its centre. Let 7’ denote the distance
from the centre of ball B and let V' = 0 in the y-z-plane passing through the centre of ball B for
points close to it. Then, the potential is

1 ppcost 1 pB
V' 0)=2'Exg— ——22 "7 —cost [ Esg—
(r,07) =2 Eao dmeg 1’2 cos rEa0 dmeg 1’2

Since the surface of the ball is an equipotential, V/(r' = R, 6') = 0, so

wBR?8

It (20)

p = 47’[’60R3EA70 = 4meg
Even if the surface of ball A is no equipotential (see Eq.), it can be treated as one with V = 0 for
placing the image charges, because by the superposition principle, charges in ball A rearrange until
they compensate for the tangential component of the field produced by pp at the surface of ball A.
Else, they would continue rearranging until they do so.

Ball B is placed at x = L > R, so for points close to or inside Ball A, sin€’ =~ 0 and variations in r’
of the order of R can be neglected. Therefore the field from pp is approximately uniform around ball
A. The electric field of a dipole at the origin is®

1 A
Eqip(r,0) = pr—— 3(p-7)7 — pl (21)
So, close to ball A,
B o~ PB P 2wBR® i
PE omeo(L —r)3T  LA(L—1)3

With L —r = L, E,, = —QWﬁRsi. In the same way as above, p4 points in the negative x-direction
and is given by,

wBR!
7

pA = 47T€0R3EpB = 8meg

Thus, each image dipole gets another factor of 2 (%)3, so that the correction to pp is plz = 4 (%)GpB
which can be neglected since R <« L and the image series truncates. Since ps < pp and since the

"David J. Griffiths, Introduction to Electrodynamics, Fifth Edition (2023), Eq.(3.104) p.156



10

field produced by pp at ball A is much smaller than E,,-r, the force between p4 and pp can be
neglected compared to the force of E,,~r on pp. In the same way, this shows that it was justified not
to consider the force with the image charges induced in ball A by qv;,, gs,,, and qcy,, -

The interaction force between ball A and ball B is equal to the force of E, ,~r on pp (the #-dependence
of the radial field and the #-component can be neglected). The force on a dipole is® F = F, + F_ =
¢(AFE) and AE = (d-V)E,so F = (p- V)E or, since p is constant, F' = V(p - E). Thus,

wBR3 WBR® w2B2RY
Fp=V(pp- Er,r>R)|r:L, 0=0 = V<47T€0L47“4> ‘r:L, 0=0 — —167T€0T33

This exactly reproduces the initial result.

8 Appendix: Motivation for Approximations

8.1 Neglecting the Convection Current due to p and ¢ in Ball A

The current density due to the rotating volume charge is J, = —2¢pwBw x 7, 50 J, = —2eqw? Brsin 6.
The current density due to B and the rotation alone (which is cancelled by the current density due to the
electric field) is Jrotation = 0 X B, 80 Jrotation = ocwBrsinf. Comparing both gives Jo  _  2ew

Jrotation Oc

For most metals, o, ~ 107ﬁ. So, —Jo_ ~ 107185, Thus the volume charge current as well as

Jrotation

the surface charge current, which is of the same order of magnitude, can be neglected since w would
have to be on the order of 1018% for the ratio to be 1. Since R < ,/-2<, R would have to be much

pow '’

smaller than 10~'m - so much smaller than an atom. Then we can’t talk about a metal ball anymore...

The magnetic field” inside a spherical shell of uniform surface charge density o is % oo Rw. While o isn’t
uniform in this problem, the expression is sufficient to consider orders of magnitude. Furthermore, p can
be divided into spherical shells, so that for both densities, taking 0 = eqwBR gives a good estimation.
So the magnetic field B, , created by the rotating charge densities is of the order of (“’—CR)2B (c = speed

of light). Since R < /-2 wR? < oclm and By, < —25B = <*B. As shown above, the factor

pow’? ocpoc?
alone is already negligibly small. The change in current density J’ created by B, , is much smaller

eow
Oc

than J,, which is already negligible on its own: J' is of the order of (%)QB -o.wR and dividing it by

2
the order of J, (which is eqw?BR) gives < i ) which is negligible by assumption.

row

8.2 Influence of pp on the Mechanism creating £, ,-r

First of all, the surface charge density o,, induced by pp on ball A can be compared to o produced
on its own, Eq.@. The field created by p4 is given by Eq.:

3pacost . 2WBRY |
" 4regrd " L7y3 r (22)

®David J. Griffiths, Introduction to Electrodynamics, Fifth Edition (2023), Eq.(4.5) p.170

"David J. Griffiths, Introduction to Electrodynamics, Fifth Edition (2023), Eq.(5.70) p.246; I'm not going to derive
this result, since it takes quite a lot of algebra while it isn’t necessary to justify that the effect of the moving charge
densities can be neglected. This is already shown with the currents and the considerations with the magnetic field created
by those currents are only meant as additional insight.

PA IR
E,, (r,0) = Tregrd [—3cosOr + x| =
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The total field at » = R due to ps and pp is then the sum of E,, as given by Eq. with r = R and

of E,, ~ —2“571%853: E,, 5= —6“’?58 cos 07. It follows that the induced surface charge density is
wBR?
Opaps = —6607 cos (23)

Comparing op, py to Eq_@, reveals that the effect of the dipoles can be neglected:

BRS
Opa,pB _6€0wL7 cos R 7
— ~ (=)’ <« 1 for most 0 24
o cowBR (% sin? 6 — 1) (L) (24)

Since op, pp < o the current due to its rotation can be neglected as well. Furthermore, since ball
A rotates in the direction in which the dipole is induced, no charges have to flow in order to keep
cancelling E,, inside the ball. So there will be no additional current.

Even if E,, were not expelled from the interior of the ball by 0}, ,5, it would have no effect since
compared to the inner electric field Eq., it is negligible:
E,, R

7
~ (— 1
B, (L) <
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