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Problem 2 - Solution

It might seem that the birds always form a scaled and ro-
tated regular tetrahedron because of symmetry, but this is
not the case. To correctly solve the problem, we must care-
fully look at the separation vector between any 2 birds, say
A and B. Notice that, in the beginning, the birds can be
placed onto every mutually non-neighbouring vertex of a
cube as they form a regular tetrahedron. This motivates us
to introduce a cylindrical coordinate system whose origin,
denoted O, is the cube’s centroid (z-axis pointing upwards):
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Figure 1: The system at ¢t =0

This system is characterised by 90°-rotational axial symme-
try for the radial and azimuthal coordinates, » and ¢, and
90°-rotational axial antisymmetry for the axial coordinate,
z, whose sign is alternating between two neighbouring birds.
Now, we express the separation vector between the birds A
and B in cylindrical coordinates as 1 = xg — xa. We trace
the path from A to B along the radial, axial and azimuthal
directions, hence now we use the points E and F' as drawn
in figure 1:

l=(xp—xp)+ (xr —xg) + (Xg — Xa)

We notice the segment AE, whose length is r, being parallel
to & at A, EF, whose length is 2z, being parallel to %, and
BF, whose length is r as well, being parallel to qs at A. We
rewrite the separation vector:

1= (ro) + (—222) + (—rf)

We may now use the fact that each bird’s velocity has the
same direction as the separation vector between itself and
the bird it’s following, as described in the problem:
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We can now easily identify each of the velocity components
in the cylindrical coordinate system chosen, therefore we
write for each component:
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The total distance differential is given by essentially ap-
plying Pythagoras’ theorem to the differentials of distances
travelled in each direction of our coordinate system:
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ds = \/dr?2 + (rd¢)? + dz2 = dr\/l + (ﬁ?) + (ji)

From the derivative chain rule, we can easily evaluate the
squared terms:
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It will only be necessary to solve the differential equation
for z(r):
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% = g = In(z) =2In(r)+C

We rewrite the last equation as z(r) = Ar?. For t = 0, r is
half the tetrahedron’s side length, while z is simply given by
Pythagoras’ theorem on the isosceles right triangle, hence:

(8) =22 = =22
zl=)=— z(r) =
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Now, we simply plug the obtained squared terms back into
the distance differential:
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We integrate this differential for the total distance travelled
by each bird. The appropriate boundaries are r = a/2 at
t = 0, and r = 0 when all birds meet up. Afterwards, we
substitute r = ax/2, giving us a non-dimensional integral:
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The integral is easily evaluated after performing hyperbolic
substitution:
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We conclude with our final answer to the problem:
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