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1 Problem 3: Oscillating Piston

A monoatomic gas fills a cylinder of height H under a piston. The piston oscillates periodically up and down with amplitude
a: during the first half-period, it moves upward with a constant speed u, and during the second half-period, it moves downward
with the same constant speed u. Initially, the root-mean-square (RMS) speed of the molecules is v. How much time t will it take
for the RMS speed to double? Use the following model assumptions: the walls and the piston are perfect heat insulators and
have zero heat capacity; the surface of the piston is perfectly flat; the mean free path of the molecules λ satisfies the following

conditions: H ≫ λ ≫ a and λ ≫ H2

vt . Additionally, v ≫ u.

2 Initial Considerations

Let A represent the piston face, B the opposite face, S the cylinder’s cross-sectional area, T0 the initial temperature, n the
particle density, m the particle mass, and vrms the root-mean-square (RMS) speed of the gas particles, with vrms(0) = v and
vrms(t) = 2v. Additionally, based on the model assumptions, the following simplifications are made:

• Collisions with the piston are wall collisions and without scattering. The piston is modeled as a perfect heat insulator with
a perfectly flat surface and zero heat capacity. Thus, it does not absorb energy from the particles. In addition, the piston’s
speed remains unchanged after collisions. Therefore, in the rest frame of the piston, it behaves as a perfect elastic wall.

• Collisions between particles are negligible in the oscillation region. This assumption is valid because λ ≫ a. As a result,
particle-particle collisions are unlikely to occur in this region.

• The gas is ideal and remains in thermal equilibrium. Since H ≫ λ the gas is long enough to have a continuous temperature

gradient. By this fact, and the additional condition, λ ≫ H2

vt it can be shown that the temperature variation is negligible
(see appendix for justification).

3 Heat Generation

Fact 1. A particle with horizontal speed vx
1 gains or loses energy ∆K = 2mu(u − vx), where vx and u points in the same

direction.

Proof. In the frame where the piston is stationary, the particle’s speed changes to vx−u. After the collision, it reflects to u−vx.
Returning to the cylinder frame, the speed becomes 2u− vx. Hence, the change in kinetic energy is:

∆K =
1

2
m

[
(2u− vx)

2 − v2x
]
= 2mu(u− vx).

To compute the energy gain over a period of oscillation 2T = 2a/u, note that the horizontal velocity component (perpendicular
to the piston), vx, follows a one-dimensional Maxwell distribution f(vx). Consider a particle with speed vx. It will collide with
the piston during its forward motion2 over a time interval t1, and during its return motion over a time interval t2 = T − t1. The
time t1 is determined by the condition:

vx (T − t1) = uT ⇒ t1 = T

(
1− u

vx

)
,

and, therefore, the time for the return motion is:

t2 = T

(
1 +

u

vx

)
.

1The subscript indicates the component along u, and avoids confusion with v.
2Forward motion is characterized by a positive speed u, and return motion by a negative speed −u.
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The particle density at the boundary (see figure) obeys a speed distribution dn
dvx

= nf(vx). Hence, the particle flux distribution is

given by ϕ(vx) = nSvxf(vx)
3. If the energy gain per collision is ∆K1 and ∆K2 for the forward and return motion respectively,

the average generated heat current (Q̇) is given by:

dQ̇ = nSvxf(vx)

(
E1t1 + E2t2

2T

)
dvx.

Using Fact 1 and replacing t1 and t2,

dQ̇ = (mu)nSvxf(vx)

(
(u− vx)

(
1− u

vx

)
+ (vx + u)

(
1 +

u

vx

))
dvx ⇒ dQ̇ = 4nmSu2vxf(vx).

Therefore,

Q̇ = 4nmSu2

∫ ∞

0

vx
1√
2πσ

e

(
− v2

x
2σ2

)
dvx; σ =

√
kT

m
.

Q̇ =
4√
2π

nSu2
√
km

√
T .

4 Differential Equation

Since v =
√

3kT0

m , increasing v to 2v require raising the temperature from T0 to 4T0. The heat capacity is Cv = 3
2knSH , giving:

3

2
knSH

dT

dt
=

4√
2π

nSu2
√
km

√
T .

Replacing
√
m/k =

√
3T0/v, we obtain:∫ 4T0

T0

dT√
T

=
8√
6π

u2

vH

√
T0

∫ t

0

dt ⇒ 2
(√

4T0 −
√
T0

)
=

8√
6π

u2

vH

√
T0t.

Thus,

t =

√
6π

4

vH

u2
.

5 Appendix: Justification of Thermal Equilibrium

To double the RMS speed, the total heat Q should quadruple the original temperature T0, hence we can estimate Q ≈ 9kNT0

2 .

The average heat current generated by the piston is ⟨I0⟩ = Q
t , the average time between collisions is ⟨τ⟩ = λ

vrms
, and the average

horizontal distance traveled between collisions is ⟨∆x⟩ = λ√
3
. Hence, the average current flux inside the gas is 4:

⟨Iin⟩ =
1

2⟨τ⟩
kNλ

〈
dT

dx

〉
⟨x⟩ = 1

6
kN

λ

H

〈
dT

dx

〉
vrms < ⟨I0⟩ =

9

2t
kNT0.

Since we can compute ∆⟨T ⟩ = ⟨TA − TB⟩ =
〈
dT
dx

〉
H, it follows that:

⟨∆T ⟩
T0

<
27

λ

H2

vrmst
<

27

λ

H2

vt
≪ 1.

Thus, we have established that the gas can be approximately treated as if it were in equilibrium.
3i) ϕ(vx) represents the particles’ flux crossing the boundary with speeds between vx and vx + dvx. ii) To see why the factor vx, consider the

particles crossing the boundary during a time dt. They come from a region vxdt behind the boundary. Dividing by dt, you obtain the expected result.
4Here, ⟨ ⟩ represent average over time and space, and Nλ is the number of molecules in a volume S⟨x⟩. All molecules in that volume are going to

collide on an average time ⟨τ⟩.
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