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Summary

Due to the high rate of particle-particle collisions we simplify the dynamics
of the particle-piston collisions such that we let all particles travel with the
rms velocity v before collision. The energetics of the particle collisions with
the piston and the probabilities for each kind of collision (gaining energy or
losing energy) are considered. We then determine the expected energy change
∆E from each collision and determine the rate of collisions of particles with
the piston wall. We then determine the total energy change of the gas in one
oscillation and thereby determine the number of oscillations (and hence the time
t taken) needed for the rms speed to double. In the Appendix we verify that
the simplification of the dynamics is valid by solving for t in the general case
where the assumption v ≫ u is not necessarily true.

Assumptions

1. H ≫ λ tells us that the particles collide so often that the energy gains/losses
of the particles after colliding with the piston are distributed evenly through-
out the gas i.e. the particles still follow a Boltzmann distribution, just that
the rms speed v slowly increases with time. It also tells us that the motion
of the particles inside the cylinder is so chaotic that the direction of the
velocities of particles that hit the piston is effectively random.

2. Since H ≫ λ ≫ H2

vt , we have t ≫ H
v , which tells us that the timescale of

the aforementioned energy redistribution is much faster than the timescale
of the rms speed increasing.

3. v ≫ u allows us to ignore the particles that move with a z-velocity lower
than u as the number of such particles will be very small. In the Ap-
pendix, we will verify that the solution for the general case (where v is
not necessarily much larger than u) reduces properly in the requested
limit.

4. Since the walls and the piston are perfect insulators and have zero heat
capacity, we can conclude that the only changes to the rms speed are due
to the dynamics of the collisions of the particles with the piston.
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5. It is assumed that all collisions with the piston are perfectly elastic, so
that we do not have to account for changes in the rms speed due to energy
losses in inelastic collisions (which would be rather complicated).

6. The assumption λ ≫ a allows us to ignore collisions between atoms within
the oscillation area of the piston.

7. It is assumed that the phrase ”oscillates periodically up and down with
amplitude a”, means that in each half-period, the piston moves up/down
by 2a before changing direction.

Dynamics of the Particle Collisions

Since many collisions with the piston and other particles will happen, we can
simply treat the dynamics of the collision as if all the particles are moving with
the rms speed v. The velocity direction of all the particles is fully random, so
we can find the average upward component of velocity vz by assuming all the
velocity components are equal on average. Since there are 3 components of the
velocity, vx, vy and vz, and v2x + v2y + v2z = v2, we have vz = v√

3
.

Now let us consider the dynamics of the collisions. We have two cases, the
piston moving up or the piston moving down:

1. When the piston moves up with speed u, particles approaching it with
speed vz will bounce off with a speed lower than vz. To see this, we go
into the piston’s frame, where it acts as a wall since its speed is constant.
In this frame, the particles have speed vz−u and bounce off with the same
speed. Therefore, in the lab frame the final particle speed is vz − 2u.

2. When the piston moves down with speed u the logic is similar. In the
piston’s frame, the particles approach and bounce off with speed vz + u,
so in the lab frame the final speed is vz + 2u.

Let each particle have mass m. The energy changes for each collision (Type
1 or 2 as described above) are

∆E1 =
1

2
m (vz − 2u)

2 − 1

2
mv2z = −1

2
m
(
4uvz − 4u2

)
= −2mu(vz − u)

∆E2 =
1

2
m (vz + 2u)

2 − 1

2
mv2z =

1

2
m
(
4uvz + 4u2

)
= 2mu(vz + u)

Probabilities of Either Type of Collision

Denote the piston’s lowest point as z = 0. In the below diagram two zones are
drawn. The red zone represents the zone where particles will undergo a Type 1
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collision, and the green zone represents the zone where particles will undergo a
Type 2 collision.

We seek to find the widths of the zones ∆z1 and ∆z2. We do this by finding
the positions of the particles such that they can reach the turning points of the
piston in time before the piston changes direction. This gives

∆z1 + 2a

vz
=

2a

u
=⇒ ∆z1 = 2a

(vz
u

− 1
)

∆z1 +∆z2
vz

=
4a

u
=⇒ ∆z2 = 2a

(vz
u

+ 1
)

Since the particles are essentially distributed uniformly inside the cylinder,
we can determine the probability of any given collision being a Type 1 collision

as p1 =
2a( vz

u −1)
4avz

u

= 1
2 − u

2vz
and the probability of any given collision being a

Type 2 collision as p2 = 1
2+

u
2vz

. The combination of Type 2 collisions increasing
the energy of the gas more than Type 1 collisions decrease it, as well as Type
2 collisions occurring more frequently, are the two factors that cause the rms
speed of the particles to increase.

The Rate of RMS Speed Increase

The expected value of the energy change after 1 particle collision is

δE = p1∆E1 + p2∆E2

=

(
1

2
− u

2vz

)
(−2mu(vz − u)) +

(
1

2
+

u

2vz

)
(2mu(vz + u))

= 4mu2

Now let us sum this over one oscillation period. To do this, we first have to
find the collision rate with the wall. Let us denote the system’s temperature as

T = mv2

3kB
. If we let the number density of particles in the cylinder be n and the

cylinder’s base area beA, the particles with velocity vz that hit the piston in time
dt are contained in a cylinder with area A and height vz dt because the piston’s
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surface is perfectly flat. Integrating this over the Boltzmann distribution for
vz > 0 gives us a total number of collisions in time t as

nAt

∫∞
0

vze
− mv2

z
2kBT dvz∫∞

−∞ e
− mv2

z
2kBT dvz

= nAt

√
kBT

2πm
=

√
1

6π
nAvt

If we denote the total number of particles in the container as N = nAH,

we can express the above number of collisions as
√

1
6π

Nvt
H , and hence in one

oscillation (which takes time 4a
u ), the number of collisions is√

8

3π

Nva

uH

and so the expected energy change per oscillation is

∆E =

√
8

3π

Nva

uH

(
4mu2

)
= 8Nm

√
2

3π

vau

H

Now note that as mentioned before, the velocities of the particles will be
redistributed quickly. Hence we have E = 1

2Nmv2 =⇒ ∆E = Nmv∆v =

8Nm
√

2
3π

vau
H =⇒ ∆v = 8

√
2
3π

au
H . Interestingly, it does not depend on v.

Now we find the number of oscillation periods r needed to double the rms speed
(∆v = v):

8

√
2

3π

au

H
n = v =⇒ r =

√
3π

2

Hv

8au

Noting that r is just t
4a
u

(the time elapsed divided by the oscillation period),

we finally obtain

t =

(
4a

u

)(√
3π

2

Hv

8au

)
=

√
3π

8

Hv

u2

Appendix

We can calculate the expected energy change per collision in the general case
where v is not necessarily much larger than u via integrating over the Boltzmann

distribution. Note that in this case, the partition function is
∫∞
0

e
− mv2

z
2kBT dvz

because only particles with a positive z-velocity will collide with the piston.
Particles with speed vz ≤ u will never catch up to the piston while it is

moving up, hence they will always undergo a Type 2 collision. The expected
energy change for these particles is
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δe1 =

∫ u

0

√
m

2πkBT e
− mv2

z
2kBT (2mu(vz + u)) dvz∫∞

0
e
− mv2

z
2kBT dvz

= 4

√
m

2πkBT

(
u2erf

(√
m

2kT
u

)√
π

2
mkBT + ukBT

(
1− e

− mu2

2kBT

))
where erf(x) is the error function, denoted by 2√

π

∫ x

0
e−t2dt.

For particles with speed vz > u, following the same logic as earlier with
regard to the collision probabilities, the expected energy change for a Type 1
collision is

−

∫∞
u

√
m

2πkBT e
− mv2

z
2kBT (2mu(vz − u))

(
1
2 − u

2vz

)
dvz∫∞

0
e
− mv2

z
2kBT dvz

and the expected energy change for a Type 2 collision is

∫∞
u

√
m

2πkBT e
− mv2

z
2kBT (2mu(vz + u))

(
1
2 + u

2vz

)
dvz∫∞

0
e
− mv2

z
2kBT dvz

Summing these two gives an additional contribution to the expected energy
as

δe2 = 4

√
m

2πkBT

(
u2
√
2πmkBT

(
1− erf

(√
m

2kBT
u

)))
After some simplification (omitted for brevity), and remembering that T =

mv2

3kB
, the overall expected energy change is

δe = δe1 + δe2 = mu2

(
4− 2 erf

(√
3

2

u

v

))
+ 2

√
2

3π
muv

(
1− e−

3u2

2v2

)
From here we proceed similarly to the original solution. The number of

collisions in one oscillation period, as mentioned before, is
√

8
3π

Nva
uH , so we have√

8

3π

Nvaδe

uH
= Nmv∆v

=⇒ ∆v =

√
8

3π

a

muH

(
mu2

(
4− 2 erf

(√
3

2

u

v

))
+ 2muv

√
2

3π

(
1− e−

3u2

2v2

))

=

(√
8

3π

au

H

(
4− 2 erf

(√
3

2

u

v

)))
+

(
8a

3πH

(
1− e−

3u2

2v2

))
v

5



Now, let A = 8a
3πH

(
1− e−

3u2

2v2

)
and B =

√
8
3π

au
H

(
4− 2 erf

(√
3
2
u
v

))
. The

solution to ∆v = Av + B is obtained via the integrating factor method, and is
related to the number of oscillation periods m by

v′ =

(
v +

B

A

)
eAm − B

A

where v′ is the rms velocity at time t > 0. Setting v′ = 2v gives us

m =
1

A
ln

(
2v + B

A

v + B
A

)

=⇒ t =
4a

uA
ln

(
2v + B

A

v + B
A

)

=
3πH

2u
(
1− e−

3u2

2v2

) ln


2v +

√
3π
8

(
4−2 erf

(√
3
2

u
v

)
1−e

− 3u2

2v2

)
u

v +
√

3π
8

(
4−2 erf

(√
3
2

u
v

)
1−e

− 3u2

2v2

)
u


What is left to do is show that this reduces to

√
3π
8

Hv
u2 in the limit v ≫ u.

First we note that for small x, erf(x) = 2√
π

∫ x

0
e−t2dt ≈ 2√

π

∫ x

0

(
1− t2

)
dt ≈ 2√

π
x

and 1− e−x ≈ x. This gives

t ≈ 3πH

2u
(
3u2

2v2

) ln
2v +

√
3π
8

(
2v2

3u

)(
4− 2

√
6
π

u
v

)
v +

√
3π
8

(
2v2

3u

) (
4− 2

√
6
π

u
v

)


=
πHv2

u3
ln

2 +
√

2π
3

(
2 v
u −

√
6
π

)
1 +

√
2π
3

(
2 v
u −

√
6
π

)
 ≈ πHv2

u3
ln

2 +
√

8π
3

v
u

1 +
√

8π
3

v
u


Now we note that for large x, ln

(
2+x
1+x

)
= ln

(
2
x+1
1
x+1

)
= ln

(
1 + 2

x

)
−ln

(
1 + 1

x

)
which reduces to 1

x via Taylor expansion of the logarithm ( 1x is small). This
finally gives us

t ≈ πHv2

u3

(√
3

8π

u

v

)
=

√
3π

8

Hv

u2

Thus, we can conclude that simplifying the collision dynamics by assuming
all the particles are moving at speed vz = v√

3
is valid.
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