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Solution

We first analyze the upward motion of the piston. Consider particles moving with a z-velocity of vz, upwards.
Since these particles move with a relative velocity of vz − u toward the piston, the number of such particles
that hit the piston in a time interval dt will be

(vz − u)dt

H
N0,

where N0 is the total number of particles of gas in the cylinder. When an atom hits the piston, its relative
velocity switches sign and it starts moving downwards with speed vz −2u. The change in energy of the atom
is

1

2
m(vz − 2u)2 − 1

2
mv2z = 2mu(−vz + u),

where m is the mass of each gas particle. Thus, the total amount of work done in time dt in a velocity range
of [vz, vz + dvz] will be

2mu(−vz + u) · (vz − u)dt

H
N0 · ϕ(vz)dvz,

where ϕ(vz) is the distribution of z-velocities in the gas. Assuming that ϕ(vz) remains constant throughout
one cycle and equals the equilibrium distribution of velocities at temperature T (see Appendix A), we can
integrate this expression over a half-period of τ1/2 = a

u to get

dE = −2maN0

H
(vz − u)2ϕ(vz)dvz.

Integrating over all positive velocities (see Appendix B), we get the change in energy of the gas over the first
half-cycle is

∆E1 =
2maN0

H

∫ ∞

0

(−v2z + 2vzu− u2)ϕ(vz)dvz.

The second half-cycle is similar. The change in energy of an atom moving upwards with z-velocity vz will
instead be

1

2
m(vz + 2u)2 − 1

2
mv2z = 2mu(vz + u),

and the amount of work done in time dt to particles with velocity in a width dvz is

2mu(vz + u) · (vz + u)dt

H
N0 · ϕ(vz)dvz.

Similar to the first half-cycle, we integrate over time τ1/2 = a
u and over all positive velocities to get

∆E2 =
2maN0

H

∫ ∞

0

(v2z + 2vzu+ u2)ϕ(vz)dvz.

Summing over both half-cycles, the change in energy of the gas over one complete cycle is

∆E =
2maN0

H

∫ ∞

0

4vzuϕ(vz)dvz =
8mauN0

H

∫ ∞

0

vzϕ(vz)dvz.
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For a gas in equilibrium at temperature T , the z-velocities of the particles will satisfy a Maxwell-Boltzmann
distribution:

ϕ(vz) =

√
m

2πkBT
exp

(
− mv2z
2kBT

)
.

Note that ∫ ∞

0

xe−ax2

dx =
1

2a

∫ ∞

0

e−ydy =
1

2a
,

where we use the substitution y = ax2. This gives∫ ∞

0

vzϕ(vz)dvz =

√
m

2πkBT

∫ ∞

0

vz exp

(
− mv2z
2kBT

)
dvz

=

√
m

2πkBT
· kBT

m
=

√
kBT

2πm
.

This gives

∆E =
8mauN0

H
·
√

kBT

2πm
=

4auN0

H

√
2kBTm

π
.

Since one cycle takes time τ = 2a
u , we have

dE

dt
=

2u2N0

H

√
2kBTm

π
=

3

2
N0kB

dT

dt
,

where we have used the fact that the internal energy of a monoatomic gas is 3
2N0kBT . Separating variables,

we have
1

2
√
T
dT =

2

3

u2

H

√
2m

πkB
dt.

The root-mean-square speed of a gas is given by v =
√

3kBT
m , so we need the temperature to quadruple for

the RMS speed to double. Hence,

2

3

u2

H

√
2m

πkB
· t =

∫ 4T0

T0

1

2
√
T
dT =

√
T0 =

√
m

3kB
v,

so

t =
1

4

√
6π

Hv

u2
.

Appendix A: Deviation from equilibrium

Due to the interaction of the gas with the piston, the gas near the piston will cool down during the upward
motion and heat up during the downward motion. In this section, we show that this effect is negligible
and so that the true answer is consistent with the assumption that ϕ(vz) remains constant throughout one
cycle. Consider the first half-cycle. Since the particles must move λ on average before encountering another
particle, the effect of the cooling will be less than that of an adiabatic cooling process occurring on a cylinder
of height λ. Let the volume of this cylinder be V and the change in volume be αV . Since a ≪ λ, α ≪ 1.
Since γ = 5

3 for a monoatomic gas, we have

T0V
2/3 = T1(V + αV )2/3 =⇒ T1

T0
=

(
1

1 + α

)2/3

= 1− 2

3
α+O(α2).

This gives

W =
3

2
NkB∆T = −NkBT (α+O(α2)).
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Assuming that ϕ(vz) is constant is equivalent to assuming that the pressure is constant throughout. In this
case, we have

W = −pαV = −NkBTα.

The deviation in the amount of work done is on the order of

NkBTα
2 ∼ N0kBT · λ

H
· a

2

λ2
∼ N0kBT · a2

Hλ
,

which is quite small. In reality, the cooling effect will much smaller still, since the heat will diffuse throughout
the entire cylinder. A similar argument can be made for the second half-cycle. Hence, the assumption that
ϕ(vz) remains constant is reasonably justified.

Appendix B: Ignoring small speeds

In the calculation of ∆E1, all positive velocities were considered, when in reality, the integral should be taken
from u to ∞. However, note that∣∣∣∣∫ u

0

(u− v)2ϕ(vz)dvz

∣∣∣∣ < ∣∣∣∣∫ u

0

u2ϕ(vz)dvz

∣∣∣∣ < u3

√
m

2πkBT
≪

√
kBT

2πm
,

where the last inequality comes from kBT ∼ mv2. Similarly, velocities between −u and 0 were ignored in
the calculation for ∆E2, but have a similarly small effect.

Appendix C: Process is slow enough

From λ ≫ H2

vt , we get

t ≫ H2

vλ
≫ H

v
.

Thus, the assumption that the cylinder heats at a uniform rate throughout is justified.
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