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We first explain what the strong inequalities imply. The first strong inequality H ≫ λ ≫ a
implies that intermolecular collisions are significant when considering the entire gas (diffusive
regime), such that we can use the Maxwell-Boltzmann distribution to describe the particles’
velocities. Meanwhile, intermolecular collisions can be ignored near the piston (effusive regime),
so we can treat the particles as mutually independent. The second strong inequality λ ≫ H2/vt
implies that the temperature of the gas is approximately uniform, as explained in Appendix 1.
The final strong inequality v ≫ u allows us to ignore higher orders of u/v.

To reduce confusion we will now redefine vrms as the rms speed of the gas molecules, and use
v to represent speed of an arbitrary gas molecule. We define the z-axis as the axis of symmetry
of the cylinder. As the piston moves upwards, we analyse how a gas particle of mass m with
z-velocity vz collides with it. In the piston’s frame the particle’s velocity is vz − u, so the
reflected velocity is u− vz, which in the lab frame corresponds to a z-velocity of 2u− vz. The
x and y-velocities are unchanged, so the change in energy of the particle is

∆E =
1

2
m((2u− vz)

2 − v2z) = 2mu(u− vz)

The rate at which particles with z-velocities between vz and vz + dvz (where dvz ≪ vz) collide
with the piston is

nA (vz − u)f(vz) dvz

Here, n is the number density of gas particles, A is the surface area of the piston and f(vz) is
the probability density of a particle having z-velocity vz. Hence the rate of change of the total
energy of the gas is

dE

dt
= −2nmuA

∫ ∞

u
(vz − u)2f(vz) dvz

Similarly, when the piston moves downwards,

dE

dt
= 2nmuA

∫ ∞

−u
(vz + u)2f(vz) dvz

Hence, on average, the rate of change of total energy is

dE

dt
= 2nmuA

1

2

(
−
∫ ∞

u
(vz − u)2f(vz) dvz +

∫ ∞

−u
(vz + u)2f(vz) dvz

)
We can simplify this by making approximations based on order-of-magnitude estimates.

Specifically, if the lower bound of each integral is increased/decreased by ∼ u, the integral will
increase/decrease by ∼ u3/vrms. Let us assume that this is an insignificant change and verify it
later. Setting both lower bounds to 0:

dE

dt
= nmuA

(∫ ∞

0
4vzu f(vz) dvz

)

1



Since the integral is on the order of uvrms ≫ u3/vrms, we confirm that increasing/decreasing
the lower bounds by ∼ u will not significantly affect the value of the integral. Now, we can
simplify this further by noting that∫ ∞

0
vzf(vz) dvz =

1

2

∫ ∞

−∞
|vz|f(vz) dvz =

1

2
⟨|vz|⟩

The average magnitude of the z-component of a random unit vector is 1/2, so ⟨|vz|⟩ = ⟨v⟩ /2,
as the direction of the velocity of each particle is completely random. An interesting proof of
this is in Appendix 2.

∴
dE

dt
= 2nmu2A ⟨|vz|⟩ = nmu2A ⟨v⟩

The mean speed is a well-known quantity, so we just use that:

⟨v⟩ =
√

8kBT

πm
=

√
8

3π
vrms =⇒ dE

dt
= nmu2A

√
8

3π
vrms

Using E = Nmv2rms/2 and n = N/AH where N is the total number of gas particles,

dv2rms

dt
= 2

√
8

3π

u2

H
vrms

Using the chain rule,

dv2rms

dt
=

dv2rms

dvrms

dvrms

dt
= 2vrms

dvrms

dt
= 2

√
8

3π

u2

H
vrms

∴
dvrms

dt
=

√
8

3π

u2

H

The RMS speed increases at a constant rate, so the time taken for the RMS speed to increase
by v is

t =

√
6π

4

vH

u2
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Appendix 1: Second strong inequality λ ≫ H2/vt

We can estimate the timescale of heat propagation by creating a simplified model of heat
conduction (diffusion) in a gas. The added energy received by a gas particle near the piston is
transferred from one particle to another. In between collisions, particles have a random speed
and direction. This describes a random walk.

The variance of the distance the added energy “travels” can be found by adding the variances
of each random step. In each random step (i.e. collision), the variance of the displacement is
on the order of λ2. So after N steps, the variance of the total displacement is ∼ Nλ2, which
means that the expected distance travelled is ∼

√
Nλ. For heat to be transferred to the bottom

of the cylinder, H ∼
√
Nλ =⇒ N ∼ H2/λ2. The distance between collisions is ∼ λ and the

particles travel at speed ∼ v so the time taken for heat to propagate is tH ∼ Nλ/v ∼ H2/λv.

λ ≫ H2/vt =⇒ t ≫ tH

Hence, the second strong inequality implies that the timescale of heat conduction is much
lower than the timescale of the temperature rise, so that we can assume that the temperature
of the gas is roughly uniform at any time.

Appendix 2: Proof that ⟨|vz|⟩ = ⟨v⟩ /2
As mentioned earlier, this is equivalent to proving that the average magnitude of the z-component
of a random unit vector is 1/2. If we treat each unit vector as the displacement vector of an
infinitesimal mass, this question becomes one of finding the height of the CM of a uniform
hemispherical shell with unit radius. We will let the hemispherical surface be S.

hCM =
1

S

∫
S
z dS =

1

2π

∫
S
n̂ · dS

The integral of the normal vector over any two surfaces with the same bounds is equal, so
we can replace the hemisphere with a circle, which has an area of π.

∴ hCM =
π

2π
=

1

2
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https://en.wikipedia.org/wiki/Random_walk

