Physics Cup - TalTech 2019 - Problem 4. March 10, 2019

Consider an infinite square grid of resistors. Let us introduce coordinates x and y so that all the nodes are at integer coordinates (n, m), with $n, m \in \mathbb{Z}$. For this grid of resistors, all the horizontal resistors, i.e. the resistors between node pairs $[(n, m),(n+1, m)]$, have the same resistance R; all the vertical resistors, i.e. the resistors between node pairs $[(n, m),(n, m+1)]$ have the same resistance r. It appears that for such a grid, the effective resistance $R_{n n}$ between the nodes $(0,0)$ and (n, n) equals to

$$
R_{n n}=\frac{2 \sqrt{R r}}{\pi} \sum_{k=1}^{n} \frac{1}{2 k-1} ;
$$

this formula can be used in your solution. By how much will change the effective resistance between the nodes $(0,0)$ and $(1,1)$ when the nodes (n, n) and $(n+1, n+1)$ are connected with a piece of wire of negligibly small resistance? In other words, determine $R_{11}^{\prime}-R_{11}$, where R_{11}^{\prime} is the new effective resistance between the nodes $(0,0)$ and $(1,1)$ after short-circuiting the nodes (n, n) and $(n+1, n+1)$. Assume that $n>1$.

