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Suppose at some instant the dumbbell deviates from its original orientation by angles α and β, as depicted in
Fig. 1.Due to the Lorentz force acting on the electrons inside the dumbbell, the charge within it will be redistributed.
Since r � R, we can neglect the charge distribution inside the rod and treat it like a wire connecting the two
spheres. Moreover, since L� R, we can assume that spheres are far away from each other, so their potentials may
be calculated as potentials of isolated spheres. The charges induced on the spheres will be ±q, as shown in Fig. 1.
The direction of Lorentz forces acting on the moving charged spheres will determine whether the system is stable
with respect to either angular deviation. Let us first consider the angle β. When we look at the side-view of the
system (Fig. 2), we see that the forces F (rather, their projections on the plane in question F sinα) will try to
reduce the magnitude of the angle β, regardless of its sign. Therefore, the motion of the dumbbell is stable with
respect to β, so we can put β = 0 for all subsequent calculations. As for the angle α, the forces will try to increase
this angle (see the top view, Fig. 3), so the oscillations of the dumbbell will be in the horizontal plane.
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Let us now derive the equations of the dumbbell’s motion. First, we determine the charge q. To do that, we
equate the work done by the Lorentz force along the rod with the potential difference of the spheres. Let vcx and
vcy be the x- and y-components of the center-of-mass velocity. Rotation of the dumbbell does not contribute to
the work, since these additional forces acting on the charges inside the rod have equal magnitudes but opposite
directions at equal distances from the center and in the end their work will cancel out. Thus, the equation would
be:

BL(vcy cosα+ vcx sinα) = 2
kq

R
,

where k = 1/(4πε0). So the charge q is equal to

q =
RBL

2k
(vcy cosα+ vcx sinα). (1)

Let r be the position of the positive sphere with respect to the center, ω the angular velocity of the rod. Using the
formula

v = vc + ω × r

we can write the equation for the center-of-mass motion:

mv̇c = q(vc + ω × r) ×B− q(vc − ω × r) ×B + FA = 2q(ω × r) ×B + FA =

= 2q(r(B · ω) − ω(B · r)) + FA = −2qBα̇r + FA, (2)

where FA is the Ampere’s force which is present due to the fact that the charge (1) changes over time, meaning
that the current along the rod is

I =
dq

dt
=
RBL

2k
(v̇cy cosα− vcy sinα α̇+ v̇cx sinα+ vcx cosα α̇).

Hence the magnitude of the Ampere’s force will be

FA = IBL =
RB2L2

2k
(v̇cy cosα− vcy sinα α̇+ v̇cx sinα+ vcx cosα α̇). (3)
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Projecting (2) onto the x- and y-axes (see Fig. 3), using (3), we get for the x-component

mv̇cx = −RB
2L2

2k
(vcy cosα+ vcx sinα) cosα α̇− RB2L2

2k
(v̇cy cosα− vcy sinα α̇+ v̇cx sinα+ vcx cosα α̇) sinα

and for the y-component

mv̇cy =
RB2L2

2k
(vcy cosα+ vcx sinα) sinα α̇− RB2L2

2k
(v̇cy cosα− vcy sinα α̇+ v̇cx sinα+ vcx cosα α̇) cosα.

After simplifying these two expressions, we get the system of equations:

v̇cx = −A(v̇cx sin2 α+ v̇cy sinα cosα+ vcy cos 2α α̇+ vcx sin 2α α̇); (4)

v̇cy = −A(v̇cx sinα cosα+ v̇cy cos2 α− vcy sin 2α α̇+ vcx cos 2α α̇). (5)

Here A = RB2L2/(2mk). Note that the z-component of the velocity doesn’t change, since there are no forces
along this axis, therefore the whole motion of the dumbbell takes place inside the xy plane. To solve the system,
we firstly multiply (4) by sin 2α, (5) by cos 2α and add them together:

v̇cx sin 2α+ v̇cy cos 2α = −A(v̇cx sinα cosα+ v̇cy cos2 α+ vcxα̇). (6)

Secondly, we multiply (4) by cos 2α, (5) by sin 2α and subtract them from each other:

v̇cx cos 2α− v̇cy sin 2α = A(v̇cx sin2 α+ v̇cy sinα cosα− vcyα̇). (7)

Rearranging the terms in (6) and (7), we arrive at a new system of equations:

v̇cx sin 2α(1 +A/2) + v̇cy cos 2α(1 +A/2) = −A/2 v̇cy −Avcxα̇; (8)

v̇cx cos 2α(1 +A/2) − v̇cy sin 2α(1 +A/2) = A/2 v̇cx −Avcyα̇. (9)

Now we do this procedure again: multiply (8) by sin 2α, (9) by cos 2α and add them together, getting

v̇cx

(
1 +

A

2

)
=

(
−A

2
v̇cy sin 2α−Avcy cos 2α α̇

)
+

(
−Avcx sin 2α α̇+

A

2
v̇cx cos 2α

)
. (10)

Then we multiply (8) by cos 2α, (9) by sin 2α and subtract them from each other:

v̇cy

(
1 +

A

2

)
=

(
−A

2
v̇cy cos 2α+Avcy sin 2α α̇

)
+

(
−Avcx cos 2α α̇− A

2
v̇cx sin 2α

)
. (11)

Notice that now the equations (10)-(11) can be written in the form

v̇cx

(
1 +

A

2

)
=

d

dt

(
−A

2
vcy sin 2α

)
+

d

dt

(
A

2
vcx cos 2α

)
; (12)

v̇cy

(
1 +

A

2

)
=

d

dt

(
−A

2
vcy cos 2α

)
+

d

dt

(
−A

2
vcx sin 2α

)
. (13)

Now we can integrate both (12) and (13) from t = 0 to the present moment, using the initial conditions

vcx(0) = v, vcy(0) = 0, α(0) ≈ 0

to get the integrals of motion:

(vcx − v)

(
1 +

A

2

)
= −A

2
vcy sin 2α+

A

2
(vcx cos 2α− v);

vcy

(
1 +

A

2

)
= −A

2
vcy cos 2α− A

2
vcx sin 2α.

These equations can be rewritten into a system of linear algebraic equations:

vcx(1 +A sin2 α) − v = −Avcy sinα cosα;

vcy(1 +A cos2 α) = −Avcx sinα cosα;
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the solution of which is

vcx = v
1 +A cos2 α

1 +A
, vcy = −v A sinα cosα

1 +A
. (14)

Now we write the equation of rotational motion with respect to the center of the dumbbell. The Ampere’s force
exerts zero torque relative to the center, so the only two forces that change the angular momentum of the dumbbell
are the Lorentz forces acting on the spheres. Hence the equation will be

L̇ = qr× ((vc + ω × r) ×B) − q(−r) × ((vc − ω × r) ×B) = 2qr× (vc ×B) =

= 2q(vc(r ·B) −B(r · vc)) = −2qB(r · vc) = −qLB(vcx cosα− vcy sinα). (15)

Let J be the moment of inertia of the dumbbell about the z-axis. Then, projecting (15) on the z-axis, we get

Jα̈ =
RB2L2

2k
(vcy cosα+ vcx sinα)(vcx cosα− vcy sinα).

Substituting vcx, vcy from (14) and simplifying, we get

Jα̈ =
RB2L2v2

4k(1 +A)
sin 2α. (16)

The stable equilibrium point for α is α = π/2, since the right-hand side of (16) turns from positive to negative
at that angle. Therefore, when the oscillations fully decay, the angle will be α = π/2. Substituting this value
into (14), we get for the terminal velocity

ux =
v

1 +A
, uy = 0,

giving the final answer

u =
v

1 +A
≈ mv

2πε0RB2L2
= 7 mm/s.
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