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1 Solution

First, we will discuss the scenario qualitatively. The dumbbell is made of copper,
which is a good conductor. At first, the dumbbell will be polarized due to the
Hall effect. Any small perturbation from equilibrium will cause the dumbbell to
have net charge on one sphere and the opposite charge on the other sphere, and
so the magnetic field will apply a non-restoring torque on the dumbbell, implying
that the equilibrium is unstable. The dumbbell will then start to oscillate in a
complicated fashion. As copper is not a perfect conductor, the current induced
in the dumbbell will dissipate energy, and eventually the dumbbell will settle
in a stable equilibrium, which is when the dumbbell is moving in a direction
perpendicular to its length. One can verify that this position is indeed stable,
as the torque is restoring.

To solve the problem, we first prove the following fact:
Suppose there is a uniform magnetic field B, and there are some charges

moving in the field. Initially, they have charge distribution ρ1(r) and finally,
they have charge distribution ρ2(r). Then the total impulse applied to the
charges is given by (∫

ρ2(r)rd3r−
∫
ρ1(r)rd3r

)
×B

Note that this is just the difference in the dipole moments cross the magnetic
field.

Proof: Suppose the charges are moving with current density J(r, t) and
charge distribution ρ(r, t). Then, the force applied to the charges is given by

F =

∫
(J(r, t)×B)d3r =

∫
J(r, t)d3r×B

=

(∫
−(∇ · J)rd3r +

∫
(J + (∇ · J)r)d3r

)
×B

=

∫ ∂ρ

∂t
rd3r +

∫ ∇ · (xJ)
∇ · (yJ)
∇ · (zJ)

 d3r

×B
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=

 d

dt

∫
ρrd3r +

∮ (xJ) · dS∮
(yJ) · dS∮
(zJ) · dS

×B

Note that the second term is zero because as long as the surface S is big
enough, the current density J will vanish on that surface. Thus, we have that
F = d

dt (
∫
ρ(r, t)rd3r)×B. We integrate over time to get the desired result.

Now we apply this fact to the main problem. Let v be the initial velocity of
the dumbbell. To find the dumbbell’s initial dipole moment, we use a reference
frame moving with the dumbbell. In this frame, the B field stays the same, and
there is an additional electric field E1 = v×B. Since the dumbbell is motionless
in this frame, the dipole moment of the dumbbell will just be α1E1, where α1 is
the polarizability of the dumbbell in the direction perpendicular to its length.
Similarly, to find the dumbbell’s final dipole moment, we use a reference frame
moving with the dumbbell’s final velocity, u. We see that the dipole moment
of the dumbbell is now α2E2, where α2 is the polarizability of the dumbbell in
the direction parallel to its length, and E2 = u×B.

Thus, since impulse is equal to the change in momentum of the dumbbell,
we have m(u− v) = ((α2u×B− α1v×B)×B). Using the fact that u and v
are both perpendicular to B, we solve to get

u =
m+ α1B

2

m+ α2B2
v

.
Now, it remains to find α1 and α2. First, we consider α1. Suppose we put

the dumbbell in an electric field E perpendicular to the dumbbell’s length. Then
the hollow spheres on the ends of the dumbbell will each be polarized. It is well
known that a conducting sphere has polarizability 4πε0R

3. Thus, each sphere
will have dipole moment 4πε0R

3E, meaning the total dipole moment of the
dumbbell is 8πε0R

3E, since the polarization of the thin rod can be neglected
(which is of order ( r

L )2), as well as the dipole-dipole interaction (which is of

order (R
L )3). Therefore, α1 = 8πε0R

3.
Finally, we consider α2. Suppose we put the dumbbell in an electric field

E parallel to the dumbbell’s length. Then, there will be a net charge on one
hollow sphere and the opposite charge on the other sphere (the charge on the
thin rod can be neglected because it has negligible capacitance, and the whole
dumbbell is a equipotential surface). Let the charges on the spheres be Q and
−Q. Then the potential difference between the spheres due to their charges
alone must balance the potential difference due to the external electric field:

2Q

4πε0R
= EL

. Thus, we have Q = 2πε0RLE, so the dumbbell’s dipole moment is QL =
2πε0RL

2E. Therefore, α2 = 2πε0RL
2.
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Plugging everything back into our expression for u gives:

u =
m+ 8πε0R

3B2

m+ 2πε0RL2B2
v

The numerical value for u is approximately 0.046m
s .
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