Physics Cup Problem 2

Nguyen Manh Quan

February 22, 2021

The comet has an elliptical orbit. Denote the Sun - a focal point - by F_{1}, and the other focal point by F_{2}. The two points on orbit with \vec{v}_{1} and \vec{v}_{2} as velocities are denoted by M and N respectively. Draw the tangents to the ellipse at M and $N . H$ and K are the projections of F_{1} on the two tangents. (Figure 1).

Figure 1: The completed construction of the problem
The conservation of angular momentum requires:

$$
v_{1} r_{1} \sin \left(\vec{r}_{1}, \vec{v}_{1}\right)=v_{2} r_{2} \sin \left(\vec{r}_{2}, \vec{v}_{2}\right) \Leftrightarrow v_{1} \times F_{1} H=v_{2} \times F_{1} K
$$

Now we consider the two conditions of the problem:

$$
\begin{cases}\vec{v}_{1} \perp \vec{v}_{2} & \Leftrightarrow O K \perp O H \\ \left|\vec{v}_{1}\right|=2\left|\vec{v}_{2}\right| & \Leftrightarrow F_{1} H=\frac{1}{2} F_{1} K\end{cases}
$$

Therefore, the problem is equivalent to a mathematical problem as follow (after setting $F_{1} H=1$): Given the $x O y$ plane and point $F_{1}(-1 ;-2)$, find the smallest possible eccentricity of an ellipse having F_{1} as a focal point and touching the two axes.

To solve this problem, reflect F_{1} with respect to the two axes, obtaining F_{1}^{\prime} and $F_{1}^{\prime \prime}$. Because of the optical property of the ellipse (a light ray from F_{1} reflecting on the ellipse would go through F_{2}, as per Fermat's principle), we can see that $F_{2}, N, F_{1}^{\prime \prime}$ are collinear, and so are F_{2}, M, F_{1}^{\prime} (the dashed lines in Figure 1). It follows that $F_{2} F_{1}^{\prime}=F_{2} F_{1}^{\prime \prime}=2 a$, where a is the length of the semi-major axis. Therefore, F_{2} lies on the perpendicular bisector (d) of $F_{1}^{\prime} F_{1}^{\prime \prime}$. The position of F_{2} on (d) will determine the eccentricity, as $e=\frac{c}{a}=\frac{F_{2} F_{1}}{F_{2} F_{1}}$.
To find F_{2}, we consider the set of points with the same ratio of distances e to F_{1} and F_{1}^{\prime}. That set is an Apollonius circle with center C and radius R, and the circle must be on the same half-plane of edge $O M$ with F_{1} because F_{2} must be so. According to the properties of the Apollonius circle, $R=\frac{2 e}{1-e^{2}}$ and $C F_{1}^{\prime}=\frac{2}{1-e^{2}}$, and circles with smaller e 's are completely inside circles with larger e 's (Figure 2).

Figure 2: Apollonius circles of two points
Therefore, the circle with the smallest e that intersects (d) is the one that touches it. In other words, (d) is the tangent of that circle, and F_{2} is the point of tangency.

Using Thales' theorem and similar triangles:

$$
\begin{aligned}
& \left\{\begin{array}{l}
\frac{C F_{2}}{C D}=\frac{O F_{1}^{\prime}}{D F_{1}^{\prime}}=\frac{1}{\sqrt{5}} \\
\frac{C F_{2}}{C D}=\frac{1}{D F_{2}} \\
\Rightarrow \sqrt{1}-C F_{1}^{\prime}
\end{array} \frac{R}{5-C F_{1}^{\prime}}\right. \\
& \Rightarrow \sqrt{5} \frac{2 e}{1-e^{2}}=5-\frac{2}{1-e^{2}} \\
& \Rightarrow 5 e^{2}+2 \sqrt{5} e-1=0 \\
& \Rightarrow e=\frac{1}{\sqrt{5}} \quad \text { where we pick the positive root }
\end{aligned}
$$

Therefore, the minimum eccentricity is $e_{\min }=\frac{1}{\sqrt{5}}$.

