
1 
 

Oliwier Urbański 

Problem No 2 

Let 𝐺 denote the gravitational constant, 𝑀 – mass of the sun (or another source of gravity),  𝑚 

– mass of the comet, �⃗� – its velocity, �⃗⃗� –angular momentum of the system with respect to the sun, �̂� 

– a unit vector directed from the sun to the comet. We’ll restrict our consideration only to elliptical 

orbits. As we will see, it leads to a certain answer (minimal eccentricity, we are seeking) that is 

smaller than 1. It means that it is unnecessary to consider parabolic and hyperbolic orbits, as they 

have eccentricity greater than 1. 

Lemma: 

Laplace-Runge-Lenz vector defined as: 

 
𝑒 =

1

𝐺𝑀𝑚
(�⃗� × �⃗⃗�) − �̂� (1)  

is constant in time and its magnitude is the eccentricity of the comet’s orbit. 

Proof: 

Calculating time derivative of 𝑒, we ascertain, that it is constant in time: 

 d𝑒

d𝑡
=

1

𝐺𝑀𝑚
(
d�⃗�

d𝑡
× �⃗⃗�) −

d�̂�

d𝑡
 (2)  

d�⃗⃗�

d𝑡
 is equal to the acceleration of the comet. Using Newton’s second law we can write 

d�⃗⃗�

d𝑡
=

−
𝐺𝑀

𝑟2
�̂�. Let 𝜃 denote a unit vector directed as �⃗⃗� × �̂�. Let 𝜔 denote angular velocity of the comet’s 

position relative to the sun.  Then: 

 d𝑒

d𝑡
=

1

𝐺𝑀𝑚

𝐺𝑀𝐿

𝑟2
𝜃 − 𝜔𝜃 = 0 (3)  

Let 𝑥 (fig. 1) denote a unit vector directed from the orbit’s centre to the sun (or any direction if 

the orbit is circular). Let 𝑣0 denote comet’s velocity when it is closest to the sun (a distance 𝑑0 from 

it). Vector 𝑒 can be written as: 

 
𝑒 = (

𝑣0𝐿

𝐺𝑀𝑚
− 1)𝑥 = (

𝑑0𝑣0
2

𝐺𝑀
− 1)𝑥 (4)  

Let 𝑣1 denote comet’s velocity when it is furthest to the sun (a distance 𝑑1 from it). Using the 

conservation of energy law and the conservation of angular momentum law, we can write: 

 

{

𝑑0𝑣0 = 𝑑1𝑣1
1

2
𝑚𝑣0

2 −
𝐺𝑀𝑚

𝑑0
=
1

2
𝑚𝑣1

2 −
𝐺𝑀𝑚

𝑑1

 (5)  
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These two equations enable us to write 𝑣1 and 𝑑1 in terms of 𝑣0 and 𝑑0: 

 

{
 
 

 
 𝑣1 = (

2𝐺𝑀

𝑑0𝑣0
2 − 1)𝑣0

𝑑1 =
𝑑0

2𝐺𝑀
𝑑0𝑣0

2 − 1

 (6)  

 

 

Major semi-axis 𝑎 has length 
𝑑0+𝑑1

2
. Thus 𝑎 =

𝐺𝑀

𝑑0𝑣0
2

2𝐺𝑀

𝑑0𝑣0
2−1

𝑑0. Let 𝑐 denote distance between the 

orbit’s centre and the sun. 𝑐 = 𝑎 − 𝑑0. Eccentricity of the orbit is defined as: 

 

𝑐

𝑎
= 1 −

𝑑0
𝑎
= 1 −

2𝐺𝑀
𝑑0𝑣0

2 − 1

𝐺𝑀
𝑑0𝑣0

2

=

1−
𝐺𝑀
𝑑0𝑣0

2

𝐺𝑀
𝑑0𝑣0

2

=
𝑑0𝑣0

2

𝐺𝑀
− 1 

 

(7)  

Comparing this result to (4), we see that |𝑒| =
𝑐

𝑎
. Therefore 𝑒  is sometimes called the 

eccentricity vector. ∎ 

Solution of the problem: 

Let �̂�1 denote a unit vector directed from the sun to the comet, when it has velocity �⃗�1. In 

analogous way we define �̂�2. Condition (i) is equivalent to (�⃗�1 × �⃗⃗�) ∙ (�⃗�2 × �⃗⃗�) = 0. Condition (ii) is 

equivalent to |�⃗�1 × �⃗⃗�| = 2|�⃗�2 × �⃗⃗�|. Transforming (1) we get: 
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𝑒 + �̂� =

1

𝐺𝑀𝑚
(�⃗� × �⃗⃗�) (8)  

Using equation above we can express conditions (i) and (ii) as: 

 
{
(𝑒 + �̂�1) ∙ (𝑒 + �̂�2) = 0

|𝑒 + �̂�1| = 2|𝑒 + �̂�2|
 (9)  

Let us analyse (9) geometrically. 

 

Let us consider a unit circle with centre 𝑂. Let 𝐴 and 𝐵 denote such points that 𝑂𝐴⃗⃗⃗⃗ ⃗⃗ = �̂�1 and 

𝑂𝐵⃗⃗ ⃗⃗ ⃗⃗ = �̂�2. Let 𝐶 denote such point that 𝐶𝑂⃗⃗⃗⃗ ⃗⃗ = 𝑒. Now simple vector addition says 𝑒 + �̂�1 = 𝐶𝑂⃗⃗⃗⃗ ⃗⃗ +

𝑂𝐴⃗⃗⃗⃗ ⃗⃗ = 𝐶𝐴⃗⃗⃗⃗⃗⃗  and 𝑒 + �̂�2 = 𝐶𝑂⃗⃗⃗⃗ ⃗⃗ + 𝑂𝐵⃗⃗ ⃗⃗ ⃗⃗ = 𝐶𝐵⃗⃗⃗⃗⃗⃗ . Condition (i) says that 𝐴𝐵𝐶 is a right-angled triangle. (ii) 

determines uniquely all its angles. 𝛽 = ∢𝐵𝐴𝐶 = arctan (
1

2
) . Let 𝛼 denote a half of the angle 𝐵𝑂𝐴, 

so ∢𝐵𝑂𝐴 = 2𝛼. Thus ∢𝐵𝐴𝑂 =
𝜋

2
− 𝛼 and ∢𝐶𝐴𝑂 = |

𝜋

2
− 𝛼 ∓ 𝛽|. Sign ∓ should be taken negative, if 

𝐶 and 𝑂 are on the same side of line 𝐴𝐵. ∓ should be taken positive, if 𝐶 and 𝑂 are on the opposite 

sides of 𝐴𝐵. Using cosine’s theorem, we can write: 

 
|𝑒|2 = |𝐴𝐶|2 + |𝐴𝑂|2 − 2|𝐴𝐶| ∙ |𝐴𝑂| cos(∢𝐶𝐴𝑂) 

 
(10)  

|𝐴𝐶| = |𝐴𝐵| cos𝛽 and |𝐴𝐵| = 2|𝐴𝑂| sin 𝛼. |𝐴𝑂| = 1, so: 

 |𝑒|2 = |𝐴𝐵|2 cos2 𝛽 + 1 − 2|𝐴𝐵| cos𝛽 cos (
𝜋

2
− 𝛼 ∓ 𝛽) (11)  
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 |𝑒|2 = 4 sin2 𝛼 cos2 𝛽 + 1 − 4 sin𝛼 cos𝛽 sin(𝛼 ± 𝛽) (12)  
 

 |𝑒|2 = 4 sin2 𝛼 cos2 𝛽 + 1 − 4 sin𝛼 cos𝛽 (sin𝛼 cos𝛽 ± sin𝛽 cos 𝛼) (13)  
 

 |𝑒|2 = 1 ∓ sin 2𝛼 sin 2𝛽 (14)  

Now we can see that the smallest possible value of |𝑒|2 is at least 1 − sin 2𝛽. In fact it is also 

the smallest possible value of |𝑒|2. Once we found appropriate 𝑒 , �̂�1 and �̂�2, we can easily construct 

the orbit and two points on it, in which the comet has velocities �⃗�1 and �⃗�2 satisfying conditions (i) 

and (ii). Therefore: 

 

𝑒min = √1 − sin 2𝛽 = √1 − 2 tan 𝛽 cos
2 𝛽 = √1 −

2 tan𝛽

1 + tan2 𝛽
 (15)  

Applying 𝛽 = arctan (
1

2
), we get finally: 

 
𝑒min =

1

√5
 (16)  

 


