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The shape of comet’s orbit can be hyperbola, parabola, or ellipse. If we can find an ellipse orbit 

that matches the requirement, we don’t have to consider the hyperbola/parabola orbit since 

the eccentricity of hyperbola and parabola is larger than that of ellipse. 

 

Assume that the shape of the orbit is an ellipse. Consider the diagram below, A and B are two 

focal points of the ellipse, moreover A is the sun. The velocity of the comet at G and H are �⃗�1 

and �⃗�2 respectively, and tangents of the ellipse at opint G and H meet at F. Since �⃗�1 ⊥ �⃗�2, 

∠GFH = 90°. Let the width and height of the ellipse are 2𝑎 and 2𝑏 respectively. That is to 

say, AD = DB = √𝑎2 − 𝑏2, where D is the midpoint of AB. For simplicity, let D is the origin of 

2D xy coordinate, and the equation of the ellipse is 
𝑥2

𝑎2 +
𝑦2

𝑏2 = 1. 

 

 

Let’s start from proving the following three useful lemmas that are related to the general 

property of ellipse.  
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Lemma 1:  

No matter how we choose point G and point H (but remain ∠GFH = 90°), F lies on the circle 

𝑥2 + 𝑦2 = 𝑎2 + 𝑏2. For simplicity, we call this circle 𝜔 in the following. 

Proof: 

Let A’ and B’ are the images of A and B reflect over the line FG and FH respectively. AA’ 

intersects line FG at M, BB’ intersects line FH at N. We know that ∠AGM = ∠BGF because 

of the optical property of the ellipse, and this implies that A’,G,B are collinear. Similarly, B’,H,A 

are collinear. MD = A’B/2 = (AG + GB) / 2 = 𝑎, similarly DN = 𝑎. Let AA’ and BB’ meet at O, 

since ∠AOB = 90° , DO = DB = √𝑎2 − 𝑏2 . Obviously DF2 + DO2 = DM2 + DN2 , so DF =

√𝑎2 + 𝑏2. This means that D lies on the circle of radius √𝑎2 + 𝑏2 centered at D. 

 

Lemma 2:  

∠GFA = ∠BFN. 

Proof: 

 cos∠FDA =
FD2 + DA2 − FA2

2 ∙ FD ∙ DA
 (1) 

 cos∠FDB =
FD2 + DB2 − FB2

2 ∙ FD ∙ DB
 (2) 

Because ∠FDA +∠FDB = 180°, cos∠FDA = − cos∠FDB, so we have 

 FA2 + FB2 = 2(FD2 + DA2) = 2[(𝑎2 + 𝑏2) + (𝑎2 − 𝑏2)] = (2𝑎)2 = AB′2 (3) 

But FB = FB’, so FA2 + FB′2
= AB′2

. This means that ∠AFB′ = 90°, so ∠GFA = ∠BFN. 

 

Lemma 3:  

∠GFA will get its smallest value when FD⊥AB. 

Proof:  

Pick one point F’ on 𝜔 such that F’D⊥AB. Since the circumcircle of ∆F’AB lies inside circle 𝜔, 

∠ AF’B≥∠ AFB. From lemma 2 we know that ∠GFA = 
90°−∠AFB

2
 , so ∠GFA will get its 

smallest value when ∠AFB is as large as possible, which occurs when FD⊥AB. 
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Back to the original question. Because the angular momentum is conserved while comet 

orbiting the sun, we have  

 AM ∙ |�⃗�1| = MF ∙ |�⃗�2| (4) 

Which is equivalent to  

 tan∠GFA =
|�⃗�2|

|�⃗�1|
=

1

2
 (5) 

We want to construct an ellipse that makes us be able to find a point F on circle 𝜔 such that 

eqation (5) is satisfied. Without loss of generality, we only consider the situation which 

tan∠GFA ≤ 1. We can deduce from simple observation that if the eccentricity of the ellipse 

is too small, the smallest possible value of tan∠GFA is to large so that it cannot equal to 1/2. 

(The extreme case is that the orbit is a circle, than tan∠GFA is always equal to 1.) So when 

the eccentricity of the ellipse is equal to its required smallest value, tan∠GF′A =
1

2
.  

 

In this case IA/AJ = MA/MF’ = 1/2, so we can let AD = DB = 1 = √𝑎2 − 𝑏2  and DF’ = 3 = 

√𝑎2 + 𝑏2 . Solving 𝑎  and 𝑏  we get 𝑎 = √5  and 𝑏 = 2 . By definition, the eccentricity is 

√𝑎2−𝑏2

𝑎
=

1

√5
. 

 

 

 

 


