Problem No 2

In a Centripetal Force Field $\vec{F}=-\frac{k}{r^{2}} \hat{r}$, there is a Runge-Lenz Vector $\vec{A}=\vec{p} \times \vec{L}-m k \hat{r} \quad$ It is a Kepler laws.
$\because \vec{A} \cdot \vec{r}=(\vec{p} \times \vec{L}) \cdot \vec{r}-m k \vec{r} \cdot \hat{r}$
$\therefore A r \cos \theta=\vec{L} \cdot(\vec{r} \times \vec{p})-m k \vec{r}$

$$
r=\frac{L^{2}}{m k+A \cos \theta}
$$

And the equation of the conic in polar coordinates $r=\frac{e p}{1+e \cos \theta}$
So we get the eccentricity of the conic curve $e=\frac{A}{m k}$
We can make $\vec{e}=\frac{\vec{A}}{m k}=\frac{\vec{p} \times \vec{L}}{m k}-\hat{r}$
So we can write $\vec{e}=\frac{\vec{A}}{m k}=\frac{\overrightarrow{p_{1}} \times \vec{L}}{m k}-\hat{r_{1}} \quad \vec{e}=\frac{\vec{A}}{m k}=\frac{\overrightarrow{p_{2}} \times \vec{L}}{m k}-\hat{r_{2}}$
$\because \overrightarrow{v_{1}} \perp \overrightarrow{v_{2}},\left|\overrightarrow{v_{1}}\right|=2\left|\overrightarrow{v_{2}}\right| \quad \vec{L} \perp \vec{p}$
$\therefore\left(\overrightarrow{p_{1}} \times \vec{L}\right) \perp\left(\overrightarrow{p_{2}} \times \vec{L}\right) \quad\left|\overrightarrow{p_{1}} \times \vec{L}\right|=2\left|\overrightarrow{p_{2}} \times \vec{L}\right|$
For any a set of v_{1} and v_{2} that satisfy this condition $, \frac{\overrightarrow{p_{1}} \times \vec{L}}{m k}, \frac{\overrightarrow{p_{2}} \times \vec{L}}{m k}, \hat{r_{1}}, \hat{r_{2}}, \vec{e}$ These four vectors can form a quadrilateral. $\left(\frac{\overrightarrow{p_{1}} \times \vec{L}}{m k}=\overrightarrow{A B}, \frac{\overrightarrow{p_{2}} \times \vec{L}}{m k}=\overrightarrow{A C}, \hat{r_{1}}=\overrightarrow{O B}\right.$, $\left.\hat{r_{2}}=\overrightarrow{O C}, \vec{e}=\overrightarrow{A O}\right)$

(Picture 1)
$|\hat{r 1}|=|\hat{r 2}|=1 \quad \overrightarrow{A B} \perp \overrightarrow{A C} \quad|\overrightarrow{A B}|=2|\overrightarrow{A C}|$
First, draw a circle of radius 1 with center O . Second, let's take a chord and define it as BC.

Because we know the angle of triangle ABC, point A only has two points. (Picture 1)
$|\overrightarrow{A O}|=e$ Apparently, $\left|\overrightarrow{A_{2} O_{2}}\right|<\left|\overrightarrow{A_{1} O_{1}}\right|$ If I want to get the smallest eccentricity , I should take the point A_{2}

Third, let 's calculate $|\overrightarrow{A O}|$. Pass O point to make OD perpendicular to BC at point D . (Picture 2)

(Picture 2)
This is obtained by a simple geometric relationship. $|A D|=|C D|=\sin \alpha$ $|O D|=\cos \alpha, \cos \beta=4 / 5$

From the law of cosines,

$$
|A O|=\sqrt{|A D|^{2}+|O D|^{2}-2|A D||O D| \cos \beta}=\sqrt{1-\frac{4}{5} \sin 2 \alpha}
$$

when $2 \alpha=\frac{\pi}{2}$ We can get the smallest eccentricity $e_{\text {min }}=\frac{\sqrt{5}}{5}$.

