Physics Cup 2021 - Problem 2

Sangyul Lee \dagger
\dagger Department of Physics and Astronomy
Seoul National University, Korea

Without loss of generality, let our comet's orbit be the following ellipse, with central body located at $(e, 0)$. Note that e is the eccentricity.

$$
\begin{equation*}
x^{2}+\frac{y^{2}}{1-e^{2}}=1 \tag{1}
\end{equation*}
$$

Denote the points of velocities $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}$ by subscripts 2 and 1 , respectively, reflecting that symmetry argument and the location of central body permits us to locate the points on the second and the first quadrant. Let r be the distance from the point on the ellipse to $(e, 0)$ and R be the distance to $(0,0)$.

Using the well-known vis-viva equation, $\left|\overrightarrow{v_{1}}\right|=2\left|\overrightarrow{v_{2}}\right|$ yields

$$
\begin{equation*}
\frac{8}{r_{2}}-\frac{2}{r_{1}}=3 \tag{2}
\end{equation*}
$$

Apollonius's theorem applied to the triangle made of foci and comet point gives

$$
\begin{equation*}
R^{2}=(r-1)^{2}+\left(1-e^{2}\right) \tag{3}
\end{equation*}
$$

We now exploit the orthogonality of $\overrightarrow{v_{1}}$ and $\overrightarrow{v_{2}}$.

Proposition:

$$
\begin{equation*}
\frac{\left(r_{1}-1\right)}{\sqrt{e^{2}-\left(r_{1}-1\right)^{2}}} \frac{\left(r_{2}-1\right)}{\sqrt{e^{2}-\left(r_{2}-1\right)^{2}}}=-\frac{1}{1-e^{2}} \tag{4}
\end{equation*}
$$

Proof:

First note that for our equation of ellipse, slope of the tangent line at $\left(x_{i}, y_{i}\right)$ on the ellipse is $-\left(1-e^{2}\right) \frac{x_{i}}{y_{i}}$.
Orthogonality of $\overrightarrow{v_{1}}$ and $\overrightarrow{v_{2}}$ gives

$$
\begin{equation*}
\left(-\left(1-e^{2}\right) \frac{x_{1}}{y_{1}}\right)\left(-\left(1-e^{2}\right) \frac{x_{2}}{y_{2}}\right)=-1 \tag{5}
\end{equation*}
$$

Solve for the coordinates on the ellipse (1) satisfying $x^{2}+y^{2}=R^{2}$, from which we get

$$
\begin{equation*}
\left(\frac{x}{y}\right)^{2}=\frac{(r-1)^{2}}{\left(1-e^{2}\right)\left(e^{2}-(r-1)^{2}\right)} \tag{6}
\end{equation*}
$$

Substituting the expression (6) to (5) and noting $r_{1}<1<r_{2}$, the proof is done.

For convenience, define a new variable: $l=r_{1}-1, l^{\prime}=r_{2}-1$, which by (2) are related by

$$
\begin{equation*}
l^{\prime}=\frac{5 l+3}{3 l+5} \tag{7}
\end{equation*}
$$

Equation (4) becomes

$$
\begin{equation*}
\frac{l}{\sqrt{e^{2}-l^{2}}} \frac{l^{\prime}}{\sqrt{e^{2}-l^{\prime 2}}}=-\frac{1}{1-e^{2}} \tag{8}
\end{equation*}
$$

After some algebra, we can solve (8) for e^{2}.

$$
\begin{equation*}
e^{2}=\frac{l^{2}+l^{\prime 2}-2 l^{2} l^{\prime 2}}{1-l^{2} l^{2}} \tag{9}
\end{equation*}
$$

Finally, using (7) and (9), we get

$$
\begin{equation*}
e^{2}=\frac{41 l^{4}+30 l^{3}-32 l^{2}-30 l-9}{25 l^{4}+30 l^{3}-30 l-25} \tag{10}
\end{equation*}
$$

This is minimized at $l=-\frac{1}{3}$, giving $\frac{1}{5}$, which is valid since $-1<l<0$.
Thus, we find the smallest possible eccentricity.

$$
e=\frac{1}{\sqrt{5}}
$$

Further generalization:

We can solve the problem with the condition $\left|\overrightarrow{v_{1}}\right|=k\left|\overrightarrow{v_{2}}\right|$, where $k>1 . k<1$ is also treated modulo relabeling. For $k=1$, the answer is trivially $e=0$ (circle).

Starting from modifying (2), we obtain the analog of (10).

$$
\begin{equation*}
e^{2}=\frac{\left(k^{4}+6 k^{2}+1\right) l^{4}+2\left(k^{4}-1\right) l^{3}-8 k^{2} l^{2}-2\left(k^{4}-1\right) l-\left(k^{2}-1\right)^{2}}{\left(k^{2}+1\right)^{2} l^{4}+2\left(k^{4}-1\right) l^{3}-2\left(k^{4}-1\right) l-\left(k^{2}+1\right)^{2}} \tag{10*}
\end{equation*}
$$

This is minimized at $l=-\frac{k-1}{k+1}$, giving $\frac{(k-1)^{2}}{k^{2}+1}$.
Therefore, the smallest possible eccentricity is

$$
e=\frac{k-1}{\sqrt{k^{2}+1}}
$$

